ggpx_statistics/s.py

145 lines
4.6 KiB
Python

import numpy as np
import pandas as pd
import networkx as nx
import matplotlib.pyplot as plt
import seaborn as sns
from matplotlib import rcParams
# 全局设置中文字体
rcParams['font.sans-serif'] = ['SimHei'] # 设置中文字体为黑体
rcParams['axes.unicode_minus'] = False # 解决坐标轴负号显示问题
# 计算相关系数矩阵
def row_correlations(df):
num_rows = df.shape[0]
corr_matrix = np.zeros((num_rows, num_rows))
# 标准化数据,并处理标准差为零的情况
def standardize_column(x):
std = x.std()
return (x - x.mean()) / std if std != 0 else np.zeros_like(x)
standardized_df = df.apply(standardize_column, axis=0)
for i in range(num_rows):
for j in range(i, num_rows):
r = np.corrcoef(standardized_df.iloc[i], standardized_df.iloc[j])[0, 1]
corr_matrix[i, j] = r
corr_matrix[j, i] = r
corr_df = pd.DataFrame(corr_matrix, index=df.index, columns=df.index)
return corr_df
def row_euclidean_distances(df):
# 获取DataFrame的行数
num_rows = df.shape[0]
# 初始化一个空的对称方阵用于存储欧氏距离
distance_matrix = np.zeros((num_rows, num_rows))
# 计算每两行之间的欧氏距离
for i in range(num_rows):
for j in range(i, num_rows):
# 计算第i行和第j行的欧氏距离
distance = np.linalg.norm(df.iloc[i] - df.iloc[j])
# 存储在对称方阵中
distance_matrix[i, j] = distance
distance_matrix[j, i] = distance
# 将欧氏距离矩阵转换为DataFrame
distance_df = pd.DataFrame(distance_matrix, index=df.index, columns=df.index)
return distance_df
def calculate_similarity(correlation_df, distance_df):
# 初始化一个空的对称方阵用于存储相似度
num_rows = correlation_df.shape[0]
similarity_matrix = np.zeros((num_rows, num_rows))
# 计算相似度S
for i in range(num_rows):
for j in range(i, num_rows):
r = correlation_df.iloc[i, j]
d = distance_df.iloc[i, j]
R = (1 + r) / 2
S = 100 * R / d if d != 0 else 100 * R / 0.25
# 存储在对称方阵中
similarity_matrix[i, j] = S
similarity_matrix[j, i] = S
# 将相似度矩阵转换为DataFrame
similarity_df = pd.DataFrame(similarity_matrix, index=correlation_df.index, columns=correlation_df.index)
return similarity_df
# 绘制相似度网络图
def plot_similarity_network(similarity_df, threshold=0.5):
G = nx.Graph()
for i in range(len(similarity_df)):
for j in range(i + 1, len(similarity_df)):
if similarity_df.iloc[i, j] > threshold:
G.add_edge(similarity_df.index[i], similarity_df.columns[j], weight=similarity_df.iloc[i, j])
pos = nx.spring_layout(G)
plt.figure(figsize=(10, 8))
edges = G.edges(data=True)
# 根据相似度调整边的宽度
weights = [e['weight'] for u, v, e in edges]
# 设置颜色为浅色调
nx.draw(G, pos, with_labels=True, node_size=700, node_color='lightblue', font_size=10,
width=2, edge_color=weights, edge_cmap=plt.cm.Blues, edge_vmin=min(weights),
edge_vmax=max(weights)*0.5)
# 显示边的相似度值
edge_labels = {(u, v): f'{e["weight"]:.2f}' for u, v, e in edges}
nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels)
plt.suptitle("相似度网络图", fontsize=16)
# plt.title('Similarity Network Graph')
plt.show()
# 绘制热力图
def plot_similarity_heatmap(similarity_df):
plt.figure(figsize=(10, 8))
sns.heatmap(similarity_df, annot=True, fmt=".2f", cmap="coolwarm", linewidths=.5)
plt.title("相关系数热力图", fontsize=16)
plt.xlabel('样品编号')
plt.ylabel('样品编号')
plt.show()
# 示例用法
if __name__ == '__main__':
# 示例矩阵,和之前的扇形图要求一样
matrix = pd.read_csv('./radartest.csv', index_col=0)
# 调用函数
correlation_result = row_correlations(matrix)
distance_result = row_euclidean_distances(matrix)
similarity_result = calculate_similarity(correlation_result, distance_result)
# 输出相关系数矩阵
print("每两行之间的相关系数矩阵:")
print(correlation_result)
# 输出欧氏距离矩阵
print("每两行之间的欧氏距离矩阵:")
print(distance_result)
# 输出相似度矩阵
print("每两行之间的相似度矩阵:")
print(similarity_result)
# 绘制相关系数热力图
plot_similarity_heatmap(correlation_result)
# 绘制相似度网络图
plot_similarity_network(similarity_result, threshold=0.5)