Announced in 2016, Gym is an open-source Python library developed to facilitate the advancement of reinforcement learning algorithms. It aimed to standardize how environments are defined in AI research study, making released research study more easily reproducible [24] [144] while providing users with a basic interface for engaging with these environments. In 2022, surgiteams.com new developments of Gym have actually been transferred to the library Gymnasium. [145] [146]
Gym Retro
Released in 2018, Gym Retro is a platform for reinforcement learning (RL) research study on video games [147] utilizing RL algorithms and study generalization. Prior RL research focused mainly on enhancing agents to fix single tasks. Gym Retro offers the ability to generalize in between video games with comparable concepts but various looks.
RoboSumo
Released in 2017, RoboSumo is a virtual world where humanoid metalearning robotic representatives at first lack understanding of how to even walk, but are offered the objectives of finding out to move and to press the opposing agent out of the ring. [148] Through this adversarial learning process, the representatives find out how to adapt to changing conditions. When an agent is then gotten rid of from this virtual environment and put in a new virtual environment with high winds, the agent braces to remain upright, recommending it had learned how to stabilize in a generalized method. [148] [149] OpenAI's Igor Mordatch argued that competition between representatives might produce an intelligence "arms race" that might increase a representative's capability to work even outside the context of the competition. [148]
OpenAI 5
OpenAI Five is a team of 5 OpenAI-curated bots used in the competitive five-on-five video game Dota 2, that discover to play against human gamers at a high ability level totally through trial-and-error algorithms. Before ending up being a team of 5, the first public presentation occurred at The International 2017, the yearly premiere championship competition for the video game, where Dendi, an expert Ukrainian gamer, lost against a bot in a live one-on-one match. [150] [151] After the match, CTO Greg Brockman explained that the bot had actually learned by playing against itself for 2 weeks of real time, and that the knowing software application was a step in the instructions of developing software that can deal with complex jobs like a cosmetic surgeon. [152] [153] The system utilizes a kind of reinforcement learning, as the bots discover over time by playing against themselves hundreds of times a day for months, and are rewarded for actions such as eliminating an opponent and taking map objectives. [154] [155] [156]
By June 2018, the ability of the bots broadened to play together as a full team of 5, and they had the ability to defeat groups of amateur and semi-professional players. [157] [154] [158] [159] At The International 2018, OpenAI Five played in 2 exhibition matches against expert players, but ended up losing both games. [160] [161] [162] In April 2019, OpenAI Five beat OG, the ruling world champions of the game at the time, 2:0 in a live exhibition match in San Francisco. [163] [164] The bots' final public appearance came later that month, where they played in 42,729 overall games in a four-day open online competition, winning 99.4% of those video games. [165]
OpenAI 5's mechanisms in Dota 2's bot player shows the difficulties of AI systems in multiplayer online battle arena (MOBA) video games and how OpenAI Five has actually shown the use of deep reinforcement knowing (DRL) agents to attain superhuman skills in Dota 2 matches. [166]
Dactyl
Developed in 2018, Dactyl utilizes device learning to train a Shadow Hand, a human-like robot hand, to manipulate physical items. [167] It finds out completely in simulation using the exact same RL algorithms and training code as OpenAI Five. OpenAI tackled the things orientation issue by utilizing domain randomization, a simulation technique which exposes the learner to a range of experiences rather than trying to fit to reality. The set-up for Dactyl, aside from having movement tracking electronic cameras, likewise has RGB cameras to allow the robot to control an approximate object by seeing it. In 2018, OpenAI showed that the system had the ability to control a cube and an octagonal prism. [168]
In 2019, OpenAI showed that Dactyl might resolve a Rubik's Cube. The robotic was able to fix the puzzle 60% of the time. Objects like the Rubik's Cube introduce complicated physics that is harder to design. OpenAI did this by improving the toughness of Dactyl to perturbations by utilizing Automatic Domain Randomization (ADR), a simulation method of producing progressively harder environments. ADR differs from manual domain randomization by not needing a human to define randomization varieties. [169]
API
In June 2020, OpenAI revealed a multi-purpose API which it said was "for accessing new AI models established by OpenAI" to let designers call on it for "any English language AI job". [170] [171]
Text generation
The company has promoted generative pretrained transformers (GPT). [172]
OpenAI's initial GPT model ("GPT-1")
The initial paper on generative pre-training of a transformer-based language design was written by Alec Radford and his associates, and released in preprint on OpenAI's website on June 11, 2018. [173] It demonstrated how a generative model of language might obtain world understanding and procedure long-range dependences by pre-training on a varied corpus with long stretches of adjoining text.
GPT-2
Generative Pre-trained Transformer 2 ("GPT-2") is a without supervision transformer language model and the successor to OpenAI's original GPT model ("GPT-1"). GPT-2 was revealed in February 2019, with only minimal demonstrative variations initially released to the general public. The full variation of GPT-2 was not immediately launched due to concern about possible misuse, including applications for composing phony news. [174] Some specialists expressed uncertainty that GPT-2 presented a significant risk.
In reaction to GPT-2, the Allen Institute for Artificial Intelligence reacted with a tool to identify "neural phony news". [175] Other scientists, such as Jeremy Howard, warned of "the innovation to completely fill Twitter, email, and the web up with reasonable-sounding, context-appropriate prose, which would drown out all other speech and be impossible to filter". [176] In November 2019, OpenAI released the complete variation of the GPT-2 language model. [177] Several websites host interactive presentations of various circumstances of GPT-2 and other transformer models. [178] [179] [180]
GPT-2's authors argue without supervision language models to be general-purpose learners, highlighted by GPT-2 attaining advanced precision and perplexity on 7 of 8 zero-shot tasks (i.e. the model was not more trained on any task-specific input-output examples).
The corpus it was trained on, called WebText, contains somewhat 40 gigabytes of text from URLs shared in Reddit submissions with at least 3 upvotes. It prevents certain problems encoding vocabulary with word tokens by utilizing byte pair encoding. This permits representing any string of characters by encoding both private characters and multiple-character tokens. [181]
GPT-3
First explained in May 2020, Generative Pre-trained [a] Transformer 3 (GPT-3) is an unsupervised transformer language model and the successor to GPT-2. [182] [183] [184] OpenAI specified that the full version of GPT-3 contained 175 billion criteria, [184] two orders of magnitude bigger than the 1.5 billion [185] in the complete version of GPT-2 (although GPT-3 models with as couple of as 125 million specifications were likewise trained). [186]
OpenAI stated that GPT-3 was successful at certain "meta-learning" jobs and could generalize the function of a single input-output pair. The GPT-3 release paper offered examples of translation and cross-linguistic transfer knowing in between English and Romanian, and in between English and German. [184]
GPT-3 drastically improved benchmark results over GPT-2. OpenAI warned that such scaling-up of language designs could be approaching or experiencing the fundamental ability constraints of predictive language models. [187] Pre-training GPT-3 needed a number of thousand petaflop/s-days [b] of compute, compared to tens of petaflop/s-days for the full GPT-2 model. [184] Like its predecessor, [174] the GPT-3 trained model was not instantly launched to the public for issues of possible abuse, although OpenAI planned to enable gain access to through a paid cloud API after a two-month complimentary personal beta that began in June 2020. [170] [189]
On September 23, 2020, GPT-3 was certified solely to Microsoft. [190] [191]
Codex
Announced in mid-2021, Codex is a descendant of GPT-3 that has actually furthermore been trained on code from 54 million GitHub repositories, [192] [193] and is the AI powering the code autocompletion tool GitHub Copilot. [193] In August 2021, an API was launched in personal beta. [194] According to OpenAI, the design can create working code in over a dozen programming languages, the majority of effectively in Python. [192]
Several issues with problems, style flaws and security vulnerabilities were cited. [195] [196]
GitHub Copilot has been implicated of emitting copyrighted code, with no author attribution or license. [197]
OpenAI announced that they would discontinue assistance for Codex API on March 23, 2023. [198]
GPT-4
On March 14, 2023, OpenAI announced the release of Transformer 4 (GPT-4), efficient in accepting text or image inputs. [199] They revealed that the updated technology passed a simulated law school bar test with a score around the leading 10% of test takers. (By contrast, GPT-3.5 scored around the bottom 10%.) They said that GPT-4 could likewise read, analyze or generate approximately 25,000 words of text, and compose code in all major programming languages. [200]
Observers reported that the iteration of ChatGPT using GPT-4 was an improvement on the previous GPT-3.5-based iteration, with the caveat that GPT-4 retained a few of the issues with earlier modifications. [201] GPT-4 is likewise efficient in taking images as input on ChatGPT. [202] OpenAI has actually declined to expose different technical details and statistics about GPT-4, such as the precise size of the design. [203]
GPT-4o
On May 13, 2024, OpenAI announced and released GPT-4o, which can process and create text, images and audio. [204] GPT-4o attained advanced outcomes in voice, multilingual, and vision criteria, setting new records in audio speech recognition and translation. [205] [206] It scored 88.7% on the Massive Multitask Language Understanding (MMLU) standard compared to 86.5% by GPT-4. [207]
On July 18, 2024, OpenAI launched GPT-4o mini, a smaller sized version of GPT-4o replacing GPT-3.5 Turbo on the ChatGPT user interface. Its API costs $0.15 per million input tokens and $0.60 per million output tokens, compared to $5 and $15 respectively for GPT-4o. OpenAI expects it to be especially useful for business, startups and developers looking for to automate services with AI representatives. [208]
o1
On September 12, 2024, OpenAI released the o1-preview and o1-mini models, which have actually been created to take more time to believe about their actions, leading to greater accuracy. These models are particularly efficient in science, coding, and thinking tasks, and were made available to ChatGPT Plus and Team members. [209] [210] In December 2024, o1-preview was changed by o1. [211]
o3
On December 20, 2024, OpenAI unveiled o3, the follower of the o1 thinking design. OpenAI likewise revealed o3-mini, a lighter and much faster version of OpenAI o3. As of December 21, 2024, this design is not available for public usage. According to OpenAI, they are testing o3 and o3-mini. [212] [213] Until January 10, 2025, safety and security scientists had the opportunity to obtain early access to these designs. [214] The design is called o3 instead of o2 to avoid confusion with telecoms companies O2. [215]
Deep research study
Deep research is an agent developed by OpenAI, revealed on February 2, 2025. It leverages the abilities of OpenAI's o3 design to perform substantial web browsing, information analysis, and synthesis, providing detailed reports within a timeframe of 5 to 30 minutes. [216] With browsing and Python tools allowed, it reached an accuracy of 26.6 percent on HLE (Humanity's Last Exam) benchmark. [120]
Image category
CLIP
Revealed in 2021, CLIP (Contrastive Language-Image Pre-training) is a design that is trained to evaluate the semantic resemblance between text and images. It can notably be used for image category. [217]
Text-to-image
DALL-E
Revealed in 2021, DALL-E is a Transformer model that produces images from textual descriptions. [218] DALL-E utilizes a 12-billion-parameter variation of GPT-3 to analyze natural language inputs (such as "a green leather purse shaped like a pentagon" or "an isometric view of a sad capybara") and create corresponding images. It can develop images of practical things ("a stained-glass window with an image of a blue strawberry") along with objects that do not exist in reality ("a cube with the texture of a porcupine"). Since March 2021, no API or code is available.
DALL-E 2
In April 2022, OpenAI announced DALL-E 2, an updated variation of the model with more realistic results. [219] In December 2022, OpenAI published on GitHub software application for Point-E, a brand-new fundamental system for transforming a text description into a 3-dimensional design. [220]
DALL-E 3
In September 2023, OpenAI revealed DALL-E 3, a more effective model better able to produce images from intricate descriptions without manual prompt engineering and render intricate details like hands and text. [221] It was released to the general public as a ChatGPT Plus function in October. [222]
Text-to-video
Sora
Sora is a text-to-video model that can produce videos based on brief detailed triggers [223] along with extend existing videos forwards or backwards in time. [224] It can produce videos with resolution approximately 1920x1080 or 1080x1920. The maximal length of produced videos is unknown.
Sora's advancement team called it after the Japanese word for "sky", to represent its "endless innovative capacity". [223] Sora's innovation is an adjustment of the technology behind the DALL · E 3 text-to-image design. [225] OpenAI trained the system using publicly-available videos along with copyrighted videos certified for that function, however did not reveal the number or the precise sources of the videos. [223]
OpenAI showed some Sora-created high-definition videos to the general public on February 15, 2024, mentioning that it might produce videos up to one minute long. It likewise shared a technical report highlighting the techniques used to train the design, and the model's abilities. [225] It acknowledged some of its shortcomings, consisting of struggles imitating complex physics. [226] Will Douglas Heaven of the MIT Technology Review called the presentation videos "excellent", however kept in mind that they must have been cherry-picked and may not represent Sora's typical output. [225]
Despite uncertainty from some scholastic leaders following Sora's public demo, significant entertainment-industry figures have actually shown substantial interest in the technology's capacity. In an interview, actor/filmmaker Tyler Perry expressed his awe at the innovation's ability to produce sensible video from text descriptions, citing its potential to reinvent storytelling and content creation. He said that his excitement about Sora's possibilities was so strong that he had actually chosen to stop briefly strategies for expanding his Atlanta-based movie studio. [227]
Speech-to-text
Whisper
Released in 2022, Whisper is a general-purpose speech recognition design. [228] It is trained on a large dataset of varied audio and is also a multi-task design that can perform multilingual speech recognition as well as speech translation and language recognition. [229]
Music generation
MuseNet
Released in 2019, MuseNet is a deep neural net trained to anticipate subsequent musical notes in MIDI music files. It can generate tunes with 10 instruments in 15 designs. According to The Verge, a tune created by MuseNet tends to start fairly however then fall into chaos the longer it plays. [230] [231] In popular culture, preliminary applications of this tool were used as early as 2020 for the internet mental thriller Ben Drowned to develop music for the titular character. [232] [233]
Jukebox
Released in 2020, Jukebox is an open-sourced algorithm to produce music with vocals. After training on 1.2 million samples, the system accepts a category, artist, and a bit of lyrics and outputs song samples. OpenAI specified the tunes "show local musical coherence [and] follow traditional chord patterns" however acknowledged that the tunes do not have "familiar larger musical structures such as choruses that duplicate" and that "there is a substantial space" in between Jukebox and human-generated music. The Verge mentioned "It's highly impressive, even if the results sound like mushy versions of songs that might feel familiar", while Business Insider specified "remarkably, some of the resulting songs are memorable and sound genuine". [234] [235] [236]
Interface
Debate Game
In 2018, OpenAI introduced the Debate Game, which teaches machines to discuss toy issues in front of a human judge. The purpose is to research study whether such an approach may help in auditing AI decisions and in developing explainable AI. [237] [238]
Microscope
Released in 2020, Microscope [239] is a collection of visualizations of every considerable layer and nerve cell of eight neural network models which are frequently studied in interpretability. [240] Microscope was developed to analyze the features that form inside these neural networks easily. The models included are AlexNet, VGG-19, various versions of Inception, and various versions of CLIP Resnet. [241]
ChatGPT
Launched in November 2022, ChatGPT is an artificial intelligence tool built on top of GPT-3 that provides a conversational user interface that enables users to ask questions in natural language. The system then reacts with a response within seconds.
1
The Verge Stated It's Technologically Impressive
rodrickgroves4 edited this page 2025-04-13 10:13:03 +08:00