Update README.md

This commit is contained in:
Tinger-ztt 2020-11-15 21:12:53 +08:00 committed by GitHub
parent 5978372c1d
commit ee92e4df25
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -50,19 +50,19 @@
## [Applications](#content) ## [Applications](#content)
### [Machine Learning](#content) ### [Machine Learning](#content)
1. **Machine learning-based phenogrouping in heart failure to identify responders to cardiac resynchronization therapy,** European Journal of Heart Failure (2018) [[*raad*]](https://github.com/vonpower/Healthcare/blob/main/Applications/Machine%20Learning/2018-Machine%20learning-based%20phenogrouping%20in%20heart%20failure%20to%20identify%20responders%20to%20cardiac%20resynchronization%20therapy.pdf) 1. **Machine learning-based phenogrouping in heart failure to identify responders to cardiac resynchronization therapy,** European Journal of Heart Failure (2018) [*[read]*](https://github.com/vonpower/Healthcare/blob/main/Applications/Machine%20Learning/2018-Machine%20learning-based%20phenogrouping%20in%20heart%20failure%20to%20identify%20responders%20to%20cardiac%20resynchronization%20therapy.pdf)
*Maja Cikes1, Sergio Sanchez-Martinez, Brian Claggett, Nicolas Duchateau, Gemma Piella, Constantine Butakoff, Anne Catherine Pouleur, Dorit Knappe, Tor Biering-Sørensen, Valentina Kutyifa, Arthur Moss, Kenneth Stein, Scott D. Solomon, and Bart Bijnens* *Maja Cikes1, Sergio Sanchez-Martinez, Brian Claggett, Nicolas Duchateau, Gemma Piella, Constantine Butakoff, Anne Catherine Pouleur, Dorit Knappe, Tor Biering-Sørensen, Valentina Kutyifa, Arthur Moss, Kenneth Stein, Scott D. Solomon, and Bart Bijnens*
1. **Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network,** Nature Medicine 25, 6569(2019) [[*raad*]](https://github.com/vonpower/Healthcare/blob/main/Applications/Machine%20Learning/2019-Cardiologist-level%20arrhythmia%20detection%20and%20classification%20in%20ambulatory%20electrocardiograms%20using%20a%20deep%20neural%20network.pdf) 1. **Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network,** Nature Medicine 25, 6569(2019) [*[read]*](https://github.com/vonpower/Healthcare/blob/main/Applications/Machine%20Learning/2019-Cardiologist-level%20arrhythmia%20detection%20and%20classification%20in%20ambulatory%20electrocardiograms%20using%20a%20deep%20neural%20network.pdf)
*Awni Y. Hannun Pranav Rajpurkar, Masoumeh Haghpanahi, Geoffrey H. Tison, Codie Bourn, Mintu P. Turakhia and Andrew Y. Ng* *Awni Y. Hannun Pranav Rajpurkar, Masoumeh Haghpanahi, Geoffrey H. Tison, Codie Bourn, Mintu P. Turakhia and Andrew Y. Ng*
1. **Performance and Reading Time of Automated Breast US with or without Computer-aided,** Radiology 292:540549(2019) [[*raad*]](https://github.com/vonpower/Healthcare/blob/main/Applications/Machine%20Learning/2019-Performance%20and%20Reading%20Time%20of%20Automated%20Breast%20US%20with%20or%20without%20Computer-aided.pdf) 1. **Performance and Reading Time of Automated Breast US with or without Computer-aided,** Radiology 292:540549(2019) [*[read]*](https://github.com/vonpower/Healthcare/blob/main/Applications/Machine%20Learning/2019-Performance%20and%20Reading%20Time%20of%20Automated%20Breast%20US%20with%20or%20without%20Computer-aided.pdf)
*Shanling Yang, MD • Xican Gao, MD • Liwen Liu, PhD, MD • Rui Shu, MD • Jingru Yan, MD • Ge Zhang, MD • Yao Xiao, MD • Yan Ju, MS • Ni Zhao, MD • Hongping Song, PhD, MD* *Shanling Yang, MD • Xican Gao, MD • Liwen Liu, PhD, MD • Rui Shu, MD • Jingru Yan, MD • Ge Zhang, MD • Yao Xiao, MD • Yan Ju, MS • Ni Zhao, MD • Hongping Song, PhD, MD*
1. **Impact of Data Presentation on Physician Performance Utilizing ArtificialIntelligence-Based Computer-Aided Diagnosis and DecisionSupport Systems,** Journal of Digital Imaging 32:408416 (2019) [[*raad*]](https://github.com/vonpower/Healthcare/blob/main/Applications/Machine%20Learning/Impact%20of%20Data%20Presentation%20on%20Physician%20Performance%20Utilizing%20ArtificialIntelligence-Based%20Computer-Aided%20Diagnosis%20and%20DecisionSupport%20Systems.pdf) 1. **Impact of Data Presentation on Physician Performance Utilizing ArtificialIntelligence-Based Computer-Aided Diagnosis and DecisionSupport Systems,** Journal of Digital Imaging 32:408416 (2019) [*[read]*](https://github.com/vonpower/Healthcare/blob/main/Applications/Machine%20Learning/Impact%20of%20Data%20Presentation%20on%20Physician%20Performance%20Utilizing%20ArtificialIntelligence-Based%20Computer-Aided%20Diagnosis%20and%20DecisionSupport%20Systems.pdf)
*L. Barinov1,2,3 A. Jairaj1 M. Becker3,4 SSeymour1 E. Lee3,4 A. Schram3,4&E. Lane4&A. Goldszal3,4 D. Quigley4 L. Paster3,4* *L. Barinov1,2,3 A. Jairaj1 M. Becker3,4 SSeymour1 E. Lee3,4 A. Schram3,4&E. Lane4&A. Goldszal3,4 D. Quigley4 L. Paster3,4*
@ -82,12 +82,12 @@
### [Radiomics](#content) ### [Radiomics](#content)
* #### 非超声影像 * #### 非超声影像
1. **Radiomics Analysis for Evaluation of Pathological Complete Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer,** Clinical Cancer Research (2017) [[*raad*]](https://github.com/vonpower/Healthcare/blob/main/Applications/Radiomics/%E9%9D%9E%E8%B6%85%E5%A3%B0%E5%BD%B1%E5%83%8F/2017-Radiomics%20Analysis%20for%20Evaluation%20of%20Pathological%20Complete%20Response%20to%20Neoadjuvant%20Chemoradiotherapy%20in%20Locally%20Advanced%20Rectal%20Cancer.pdf) 1. **Radiomics Analysis for Evaluation of Pathological Complete Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer,** Clinical Cancer Research (2017) [*[read]*](https://github.com/vonpower/Healthcare/blob/main/Applications/Radiomics/%E9%9D%9E%E8%B6%85%E5%A3%B0%E5%BD%B1%E5%83%8F/2017-Radiomics%20Analysis%20for%20Evaluation%20of%20Pathological%20Complete%20Response%20to%20Neoadjuvant%20Chemoradiotherapy%20in%20Locally%20Advanced%20Rectal%20Cancer.pdf)
*Zhenyu Liu, Xiao-Yan Zhang,Yan-Jie Shi, Lin Wang, Hai-Tao Zhu, Zhenchao Tang, Shuo Wang, Xiao-Ting Li, Jie Tian, and Ying-Shi Sun* *Zhenyu Liu, Xiao-Yan Zhang,Yan-Jie Shi, Lin Wang, Hai-Tao Zhu, Zhenchao Tang, Shuo Wang, Xiao-Ting Li, Jie Tian, and Ying-Shi Sun*
* #### 超声影像 * #### 超声影像
1. 面向淋巴结病变多分类鉴别的弹性和 B 型 双模态超声影像组学, 生物医学工程学杂志2019年12月第36卷第6期 [[*raad*]](https://github.com/vonpower/Healthcare/blob/main/Applications/Radiomics/%E8%B6%85%E5%A3%B0%E5%BD%B1%E5%83%8F/%E9%9D%A2%E5%90%91%E6%B7%8B%E5%B7%B4%E7%BB%93%E7%97%85%E5%8F%98%E5%A4%9A%E5%88%86%E7%B1%BB%E9%89%B4%E5%88%AB%E7%9A%84%E5%BC%B9%E6%80%A7%E5%92%8CB%E5%9E%8B%E5%8F%8C%E6%A8%A1%E6%80%81%E8%B6%85%E5%A3%B0%E5%BD%B1%E5%83%8F%E7%BB%84%E5%AD%A6_%E7%9F%B3%E9%A2%89.pdf) 1. 面向淋巴结病变多分类鉴别的弹性和 B 型 双模态超声影像组学, 生物医学工程学杂志2019年12月第36卷第6期 [*[read]*](https://github.com/vonpower/Healthcare/blob/main/Applications/Radiomics/%E8%B6%85%E5%A3%B0%E5%BD%B1%E5%83%8F/%E9%9D%A2%E5%90%91%E6%B7%8B%E5%B7%B4%E7%BB%93%E7%97%85%E5%8F%98%E5%A4%9A%E5%88%86%E7%B1%BB%E9%89%B4%E5%88%AB%E7%9A%84%E5%BC%B9%E6%80%A7%E5%92%8CB%E5%9E%8B%E5%8F%8C%E6%A8%A1%E6%80%81%E8%B6%85%E5%A3%B0%E5%BD%B1%E5%83%8F%E7%BB%84%E5%AD%A6_%E7%9F%B3%E9%A2%89.pdf)
*石颉1, 2江建伟3常婉英3陈曼3张麒1, 2* *石颉1, 2江建伟3常婉英3陈曼3张麒1, 2*
@ -98,11 +98,11 @@
* ### Deep Learning & Radiomics * ### Deep Learning & Radiomics
1. **Deep learning Radiomics of shear wave elastography significantly improved diagnostic performance for assessing liver fibrosis in chronic hepatitis B: a prospective multicentre study,** GUT (2018) [[*raad*]](https://github.com/vonpower/Healthcare/blob/main/Applications/Combination/Deep%20Learning%2BRadiomics/2018-GUT-WangKun.pdf) 1. **Deep learning Radiomics of shear wave elastography significantly improved diagnostic performance for assessing liver fibrosis in chronic hepatitis B: a prospective multicentre study,** GUT (2018) [*[read]*](https://github.com/vonpower/Healthcare/blob/main/Applications/Combination/Deep%20Learning%2BRadiomics/2018-GUT-WangKun.pdf)
*Wang K, et al.* *Wang K, et al.*
1. 基于影像组学和深度迁移学习的超声图像肝纤维化评估方法研究, 深圳大学,硕士学位论文 (2019) [[*raad*]](https://github.com/vonpower/Healthcare/blob/main/Applications/Combination/Deep%20Learning%2BRadiomics/%E5%9F%BA%E4%BA%8E%E5%BD%B1%E5%83%8F%E7%BB%84%E5%AD%A6%E5%92%8C%E6%B7%B1%E5%BA%A6%E8%BF%81%E7%A7%BB%E5%AD%A6%E4%B9%A0%E7%9A%84%E8%B6%85%E5%A3%B0%E5%9B%BE%E5%83%8F%E8%82%9D%E7%BA%A4%E7%BB%B4%E5%8C%96%E8%AF%84%E4%BC%B0%E6%96%B9%E6%B3%95%E7%A0%94%E7%A9%B6_%E8%B5%B5%E4%B8%87%E6%98%8E.caj) 1. 基于影像组学和深度迁移学习的超声图像肝纤维化评估方法研究, 深圳大学,硕士学位论文 (2019) [*[read]*](https://github.com/vonpower/Healthcare/blob/main/Applications/Combination/Deep%20Learning%2BRadiomics/%E5%9F%BA%E4%BA%8E%E5%BD%B1%E5%83%8F%E7%BB%84%E5%AD%A6%E5%92%8C%E6%B7%B1%E5%BA%A6%E8%BF%81%E7%A7%BB%E5%AD%A6%E4%B9%A0%E7%9A%84%E8%B6%85%E5%A3%B0%E5%9B%BE%E5%83%8F%E8%82%9D%E7%BA%A4%E7%BB%B4%E5%8C%96%E8%AF%84%E4%BC%B0%E6%96%B9%E6%B3%95%E7%A0%94%E7%A9%B6_%E8%B5%B5%E4%B8%87%E6%98%8E.caj)
*赵万明* *赵万明*