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Imaging with US remains an accurate method to guide 
recommendation for management of thyroid nodules 

(1), although interpretation variability and overdiagnosis 
represent continual challenges (2,3). To help radiologists 
improve consistency, several organizations have developed 
imaging criteria to aid in the selection of nodules recom-
mended for fine-needle aspiration (FNA) biopsy. In 2017, 
the American College of Radiology (ACR) published its 
Thyroid Imaging Reporting and Data System (TI-RADS) 
(4). Similar to its predecessors, ACR TI-RADS is on the 
basis of US features and maximum nodule size. ACR TI-
RADS has been shown to increase accuracy and specificity 
compared with other systems (5), enhance report quality, 
and improve recommendations for management (6).

Despite these potential benefits, certain barriers may 
prevent radiologists from adopting or using ACR TI-RADS. 
First, a high interobserver variability among radiologists’ 

interpretations has been shown with the system (k = 0.51) 
(2). Such variability may lead to inconsistent recommen-
dations for nodule management between readers. Second, 
evaluating multiple nodules (with multiple features per 
nodule) can be labor intensive and could be more time 
consuming for some radiologists. Any practice that adds 
time to an already busy radiology workflow could serve as 
a disincentive for adopting best practices.

Because of these types of challenges, the medical com-
munity has started to use deep learning (7). Deep learning 
represents an approach to artificial intelligence that has been 
increasingly applied throughout medicine, with emerging 
applications in fields such as dermatology (8), ophthal-
mology (9), and radiology (10,11). Recent deep learning 
research in radiology has shown algorithm performance 
comparable to radiologists (12), and as the field continues 
to grow the variety and number of possible uses for deep 
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Background: Management of thyroid nodules may be inconsistent between different observers and time consuming for radiologists. 
An artificial intelligence system that uses deep learning may improve radiology workflow for management of thyroid nodules.

Purpose: To develop a deep learning algorithm that uses thyroid US images to decide whether a thyroid nodule should undergo a 
biopsy and to compare the performance of the algorithm with the performance of radiologists who adhere to American College of 
Radiology (ACR) Thyroid Imaging Reporting and Data System (TI-RADS).

Materials and Methods: In this retrospective analysis, studies in patients referred for US with subsequent fine-needle aspiration or 
with surgical histologic analysis used as the standard were evaluated. The study period was from August 2006 to May 2010. A mul-
titask deep convolutional neural network was trained to provide biopsy recommendations for thyroid nodules on the basis of two 
orthogonal US images as the input. In the training phase, the deep learning algorithm was first evaluated by using 10-fold cross-val-
idation. Internal validation was then performed on an independent set of 99 consecutive nodules. The sensitivity and specificity of 
the algorithm were compared with a consensus of three ACR TI-RADS committee experts and nine other radiologists, all of whom 
interpreted thyroid US images in clinical practice.

Results: Included were 1377 thyroid nodules in 1230 patients with complete imaging data and conclusive cytologic or histologic 
diagnoses. For the 99 test nodules, the proposed deep learning algorithm achieved 13 of 15 (87%: 95% confidence interval [CI]: 
67%, 100%) sensitivity, the same as expert consensus (P . .99) and higher than five of nine radiologists. The specificity of the 
deep learning algorithm was 44 of 84 (52%; 95% CI: 42%, 62%), which was similar to expert consensus (43 of 84; 51%; 95% CI: 
41%, 62%; P = .91) and higher than seven of nine other radiologists. The mean sensitivity and specificity for the nine radiologists 
was 83% (95% CI: 64%, 98%) and 48% (95% CI: 37%, 59%), respectively.

Conclusion: Sensitivity and specificity of a deep learning algorithm for thyroid nodule biopsy recommendations was similar to that 
of expert radiologists who used American College of Radiology Thyroid Imaging and Reporting Data System guidelines.
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used during algorithm development. They were analyzed by 
multiple readers in a previous study (5).

The US examinations were performed by using a variety of 
commercially available units (Antares and Elegra, Siemens Health-
ineers, Erlangen, Germany; ATL HDI 5000 and iU22, Philips, 
Best, the Netherlands; and Logic E9, GE Healthcare, Waukesha, 
Wis) equipped with 5–15-MHz linear array transducers.

Pathologic Ground Truth
FNA samples were obtained during standard clinical workflow 
and cytologic results were reviewed by pathology faculty at the 
institution (Washington University, St Louis, Mo). Determi-
nation of benignity or malignancy was made by using FNA 
results or, when available, surgical specimens. For FNA, five 
categories were used: malignant, suspicious for malignancy, in-
determinate, benign, and nondiagnostic. We included nodules 
that were malignant or benign on the basis of initial FNA re-
sults or if a nodule underwent repeated FNA or surgical resec-
tion that subsequently provided confirmation of malignancy 
or benignity.

Image Annotation
All images in the training set were interpreted by one of two 
radiologists who were blinded to pathologic results. These two 
radiologists were later on the ACR TI-RADS steering com-
mittee and helped to develop ACR TI-RADS. The first reader 
(W.D.M.) had 22 years of experience and the second reader 
had 20 years of experience in thyroid imaging. By following the 
ACR TI-RADS lexicon, the readers assigned features for nod-
ule composition, echogenicity, margins, and echogenic foci. For 
the echogenicity category, the readers classified 243 nodules as 
moderate to markedly hypoechoic, which was not compatible 
with the ACR TI-RADS lexicon. For these cases, a third reader 
(B.W.T., a board-eligible radiology fellow with specialty prac-
tice in thyroid imaging and 5 years of experience) reviewed the 
echogenicity feature and modified it by using the original assign-
ment and additional imaging review. This reader also evaluated 
nodules for the shape feature. Eventually, all 1377 nodules were 
appropriately assigned to all five ACR TI-RADS categories.

Annotations for the five ACR TI-RADS feature categories for 
the test nodules were performed by 12 radiologists in December 
2016, before the publication of ACR TI-RADS, with the read-
ers blinded to the pathologic results. These interpretations were 
on the basis of images obtained on transverse and longitudinal 
planes, and video clips obtained on at least one plane displayed 
to the readers on standard computer monitors by using a website 
interface. Independent interpretations by three radiologists who 
were experts on the ACR TI-RADS committee, one of whom is 
a coauthor (F.N.T.), were combined into an expert consensus by 
using majority vote. These radiologists had between 26 and 
34 years of posttraining experience.

Among the remaining nine readers, one reader (W.D.M.) 
had 22 years of experience and also interpreted the training 
cases. The other eight radiologists reported thyroid US in their 
clinical practice but had no knowledge of the management 
recommendations in ACR TI-RADS. This group included 
two academic radiologists with subspecialty training in US 

Abbreviations
ACR = American College of Radiology, AUC = area under the receiver 
operating characteristic curve, CI = confidence interval, FNA = fine-
needle aspiration, TI-RADS = Thyroid Imaging Reporting and Data 
System

Summary
A deep convolutional neural network that uses American College of 
Radiology (ACR) Thyroid Imaging Reporting and Data System (TI-
RADS) features for training achieved similar sensitivity and specific-
ity for recommending biopsy for thyroid nodules observed at US 
compared with radiologists who use ACR TI-RADS.

Key Points
 n For discriminating malignant and benign nodules, deep learning 

achieved an area under the receiver operating characteristic curve 
(AUC) of 0.87 (95% confidence interval [CI]: 0.76, 0.95), which 
is comparable to the AUC of 0.91 (95% CI: 0.82, 0.97) for a con-
sensus of three American College of Radiologists (ACR) Thyroid 
Imaging Recording and Data System (TI-RADS) committee ex-
perts (P = .42) and the mean AUC of 0.82 (95% CI: 0.73, 0.90) 
for nine individual radiologists (P = .38).

 n Our deep learning system achieved 52% specificity and 87% 
sensitivity in recommending biopsy for thyroid nodules compared 
with 51% specificity (P = .91) and 87% sensitivity (P . .99) from 
a consensus of three ACR TI-RADS committee experts.

learning continue to increase. Some of the challenges of thyroid 
US interpretation and reporting data systems such as ACR TI-
RADS represent problems that may be solved through deep learn-
ing applications.

The aim of our study was to design a deep learning algo-
rithm that uses thyroid US images to decide whether a thyroid 
nodule should undergo a biopsy. We also aimed to compare 
the performance of the algorithm to that of radiologists with 
varying expertise who adhere to ACR TI-RADS interpretation 
criteria.

Materials and Methods

Study Population
In this institutional review board–approved, Health Insurance 
Portability and Accountability Act–compliant study, we retro-
spectively analyzed a data set of thyroid nodules. The initial 
population included 1631 nodules in 1439 adult patients from 
a single institution who underwent diagnostic thyroid US ex-
aminations and US-guided FNA of a focal thyroid nodule be-
tween August 2006 and May 2010. It was refined by excluding 
203 nodules in 172 patients who had initial nondiagnostic or 
indeterminate cytologic results and without subsequent cyto-
logic or histologic diagnoses. Nodules in which images on one 
or both orthogonal planes were missing (n = 15) were also ex-
cluded. In addition, to facilitate nodule detection (based on a 
method that uses calipers), cases that did not contain images 
with proper caliper measurement marks (at least one caliper 
measurement on one plane and two on the other) were ex-
cluded (n = 36). This resulted in 1377 nodules from 1230 pa-
tients. In the final sets for the analysis, there were 1278 nodules 
from 1139 patients in the training set and 99 nodules from 
91 patients in the test set (Fig 1). The 99 test nodules were not 
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Use of the deep learning risk level and a nodule’s size resulted in a 
recommendation for FNA and follow-up. The size thresholds for 
FNA and follow-up recommendation were the same as in ACR 
TI-RADS. We used this step to choose the appropriate point on 
a receiver operating characteristic curve that considers nodule 
size and results in clinically relevant decisions.

Evaluation
We evaluated our deep learning algorithm and compared it with 
the performance of radiologists in two steps (Fig 4). First, we 
compared the performance of the algorithm to human readers 
for discriminating benign and malignant nodules alone by using 
the area under the receiver operating characteristic curve (AUC). 
This is the first and principal step of our algorithm and the ACR 
TI-RADS, and it does not involve nodule size. The AUC for the 
deep learning algorithm was calculated by using the likelihood 
of malignancy returned by model, and the AUC for radiologists 
used the total number of points computed with ACR TI-RADS. 
Then, for the second step, we evaluated the performance of the 
entire system in terms of sensitivity and specificity for recom-
mendation of FNA and follow-up that in addition to the first 
step involves size-based thresholding. This two-step evaluation 
allows for isolating the predictive performance that is purely on 
the basis of the image from the final size-based recommenda-
tion step that aims to relate to the risk that malignant nodules 

and 20 and 32 years of practice experience, respectively. The 
six remaining radiologists from this group were from private 
practices with fellowship training in neuroradiology, women’s 
imaging, and nuclear medicine, with experience ranging from 
3 to 32 years.

On the basis of feature assessments for the five ACR TI-RADS 
categories from each reader, we first computed a total number of 
points per nodule and corresponding ACR TI-RADS risk levels. 
Then, according to ACR TI-RADS guidelines, we retrospectively 
decided whether a nodule would qualify for FNA and follow-up 
on the basis of nodule size and ACR TI-RADS risk level.

Deep Learning Algorithm
Our proposed deep learning algorithm had three main stages: 
nodule detection followed by prediction of malignancy and 
risk-level stratification. Figure 2 shows these stages and how 
they are connected. A complete description of all the compo-
nents of the deep learning algorithm are provided in Appendix 
E1 (online).

For nodule detection, we first obtained a bounding box of 
a nodule by enclosing calipers included in every image (used in 
clinical practice for nodule measurement). To detect the calipers, 
we trained a Faster Region-based Convolutional Neural Network 
detection algorithm (13). After detecting the calipers on the US 
image, we extracted a square image with a fixed size margin of 
32 pixels enclosing the corresponding nodule, 
resized the image to 160 3 160 pixels, and 
applied preprocessing (Appendix E1 [online]).

For classification, we trained a custom, 
multitask deep convolutional neural net-
work. The tasks used for training were pres-
ence or absence of malignancy and all of 
the ACR TI-RADS features across the 
five categories (composition, echogenicity, 
shape, margin, and echogenic foci). The 
architecture of our common represen-
tation extraction network is shown in  
Figure 3. Source code of the model is avail-
able at the following link: https://github.com/
MaciejMazurowski/thyroid-us.

During inference, we stratified the proba-
bility of malignancy returned by the network 
into risk levels referred to as deep learning risk 
levels (ie, DL2–DL5), modeled after the ones 
defined in ACR TI-RADS (ie, TR2–TR5). Figure 1: Flowchart of inclusion criteria for initial population and exclusion criteria for the 

final study population. FNA = fine-needle aspiration.

Figure 2: Flowchart of the three main processing stages of our deep learning algorithm. CNN = convolutional neural network, R-CNN = 
Region-based CNN, ROI = region of interest.
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the mean receiver operating characteristic curve is shown in 
Figure 5b.

After applying risk level stratification and size thresholds for 
FNA recommendation according to ACR TI-RADS, the sensitiv-
ity of the proposed deep learning algorithm was 13 of 15 (87%; 
95% CI: 67%, 100%), the same as the expert consensus sensitiv-
ity of 13 of 15 (87%; 95% CI: 67%, 100%). For the nine ra-
diologists, sensitivity ranged from 11 of 15 (73%) to 14 of 15 
(93%). The differences between sensitivity of deep learning and 
radiologists were not statistically significant (P . .43). In terms 
of specificity, deep learning achieved 44 of 84 (52%; 95% CI: 
41%, 63%), which was higher (although not significantly; P = 
.91) than expert consensus (43 of 84; 51% [95% CI: 41%, 62%]) 
and seven of the nine radiologists with specificity ranging from 24 
of 84 (29%) to 59 of 84 (70%). The differences between specific-
ity of deep learning and two of these seven radiologists (reader 
2 and reader 8) were statistically significant (P , .001 and P = 
.042, respectively). The mean sensitivity and specificity for all nine 
radiologists was 83% (95% CI: 64%, 98%) and 48% (95% CI: 
37%, 59%), respectively; both mean sensitivity and mean specific-
ity were lower than for the deep learning algorithm (sensitivity and 
specificity, P = .68 and .45, respectively). Sensitivity and specificity 

of different sizes pose to 
patients.

We performed valida-
tion of the performance 
of the deep learning clas-
sifier in two ways: by us-
ing a 10-fold cross-vali-
dation with our training 
set by pooling predictions 
from all 10 nonoverlap-
ping folds and by using 
a hold-out test set of 99 
cases. For the training 
set, AUC of the deep 
learning algorithm was 
compared with that of a 
single radiologist. On the 
test set, we compared the deep 
learning with consensus of the 
three ACR TI-RADS commit-
tee members and the nine other 
radiologists. Statistical tests for 
all comparisons were performed 
with bootstrapping.

Results

Study Population
The total number of malignant 
nodules was 142 (of 1377 nod-
ules; 10.3%); there were 127 
malignant nodules (of 1278 
nodules; 9.9%) in the training 
set and 15 malignant nodules 
(of 99 nodules; 15%) in the test 
set (Table 1). The prevalence of malignant nodules between the 
training and test sets was not statistically significant (P = .09). The 
mean maximum nodule size for all cases was 2.6 cm (2.6 cm in the 
training set and 2.7 cm in the test set; P = .53).

Comparison of Deep Learning and Radiologists
For the training set of 1278 nodules, evaluated by using 10-fold 
cross-validation, the deep learning algorithm achieved an AUC 
of 0.78 (95% confidence interval [CI]: 0.74, 0.82) compared 
with 0.80 (95% CI: 0.76, 0.84; P = .44) for a single ACR TI-
RADS committee radiologist by using ACR TI-RADS (Fig 5a).

For the test set for discriminating malignant and benign 
nodules, deep learning achieved an AUC of 0.87 (95% CI: 
0.76, 0.95), which is comparable (P = .42) to that of expert 
consensus (0.91; 95% CI: 0.82, 0.97). The mean AUC of the 
nine radiologists was 0.82 (95% CI: 0.73, 0.90; not signifi-
cantly lower than for deep learning, P = .38); the lowest AUC 
was 0.76 (95% CI: 0.63, 0.88) and the highest AUC was 0.85 
(95% CI: 0.76, 0.94). The performance of eight of the nine 
individual radiologists was worse than that of deep learning; 
however, these differences were not statistically significant (P 
. .08). The score of each reader is provided in Table 2 and 

Figure 3: Convolutional neural network architecture of the network for shared representation extraction.

Figure 4: A diagram of the two-step decision-making process for management of thyroid nodules. ACR =  
American College of Radiology, FNA = fine-needle aspiration, TI-RADS = Thyroid Imaging Reporting and 
Data System.
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of the algorithm was similar to that of consensus of three expert 
readers by achieving sensitivity of 87% (95% confidence interval 
[CI]: 67%, 100%) and specificity of 52% (95% CI: 41%, 63%).

The most valuable aspect of the deep learning algorithm is 
the ability to improve specificity of thyroid nodule biopsy rec-
ommendations. In a study that compared the recommendations 
of eight radiologists for 100 nodules, Hoang et al (5) found that 
ACR TI-RADS offered a meaningful reduction in the num-
ber of thyroid nodules recommended for biopsy and improved 
specificity. In our study, we show that deep learning maintains 
or provides improvement in specificity compared with radiolo-
gists who use ACR TI-RADS, which suggests that the proposed 
algorithm offers performance markedly higher than radiologists 
who do not use ACR TI-RADS.

Our results add to the growing body of evidence demonstrat-
ing the potential power of deep learning when applied to thyroid 
US. Chi et al (14) showed that a system that uses imaging features 
extracted with a deep convolutional neural network can achieve 
accuracy greater than 99% for the binary task of classifying thyroid 
nodules on US images to ACR TI-RADS categories 1 and 2 versus 
all categories. Even though the performance seems to be outstand-
ing, it refers to a greatly simplified task of predicting proxy labels. 
However, our ground truth used for both the training and testing 
nodule subsets relied on cytologic and pathologic results. In an-
other study, Ma et al (15) used a large data set of over 8000 thyroid 
nodules with malignant and benign status confirmed either by op-
eration or FNA result. The proposed deep learning algorithm that 
required manual nodule segmentation resulted in high sensitiv-
ity (82%) and specificity (84%); however, nodule sizes were not 
considered in the evaluation. The malignancy rate was also high 
in that study (15) and not reflective of a typical cohort of thyroid 
nodules undergoing thyroid US or biopsy. However, our study 
compared fully autonomous decisions made by a deep learning 
algorithm to radiologists.

A deep learning algorithm for prediction of malignancy could 
make a difference in clinical practice. First, for a given image, our 
algorithm will always provide the same prediction. Therefore, it 
will eliminate a substantial interreader variability that has been 
observed for this task even when the ACR TI-RADS system is 
used. Second, the algorithm could reduce the time required for 
interpretation of thyroid nodules, which puts some strain on ra-
diology departments. Finally, deep learning may perform better 
than some radiologists who interpret thyroid US images in clini-
cal practice, although a larger study is needed to confirm this.

The ACR TI-RADS system consists of two steps. The first 
step, on the basis of specific features of the nodules, estimates the 
likelihood that the lesion is malignant. The second step triages 

for FNA recommendation by all readers is 
provided in Table 2. Of the nodules that 
were misclassified by deep learning (42%; 
95% CI: 33%, 53%), the nine radiologists 
misclassified an average of 72% (95% CI: 
59%, 83%) of nodules. However, of the 
nodules misclassified by radiologists (average 
error rate, 47%; 95% CI: 37%, 56%), deep 
learning misclassified 66% (95% CI: 53%, 
77%) of nodules. This shows a notable over-
lap in the misclassified cases and somewhat lower misclassification 
rate by the deep learning algorithm compared with that of the 
radiologists.

When recommending follow-up for nodules stratified into 
risk levels and when using size thresholds according to ACR TI-
RADS, deep learning performed similarly to the radiologists. Its 
sensitivity was 14 of 15 (93%; 95% CI: 78%, 100%). Expert 
consensus did not miss any malignant nodules for recommend-
ing follow-up and achieved specificity 34 of 84 (40%; 95% CI: 
30%, 51%). Similar specificity (P = .74) was obtained by the 
deep learning algorithm (specificity, 32 of 84; 38%; 95% CI: 
28%, 49%). For the remaining nine readers, the mean sensitivity 
was 97%, whereas the mean specificity was relatively low (34%). 
In Table 2, we provide sensitivity and specificity for follow-up 
recommendation by all readers.

We split the test nodules that were positive for malignancy 
and negative for malignancy (ie, benign) into two subsets, easy 
and difficult, on the basis of the performance of human raters. 
Ten of 15 nodules positive for malignancy were included in the 
easy set on the basis of unanimous correct management deci-
sions from all 10 readers (expert consensus and nine individual 
radiologists). For nodules that were negative for malignancy, 39 
of 84 were also included in the easy set on the basis of at least six 
of 10 correct management decisions for FNA recommendation. 
These selections resulted in two subsets, one with 49 easy nodules 
(10 nodules positive for malignancy and 39 nodules negative for 
malignancy) and the other with 50 difficult nodules (five nodules 
positive for malignancy and 45 nodules negative for malignancy). 
Figure 6 compares the performance of deep learning and radiolo-
gists on a subset of easy (Fig 6a) and difficult (Fig 6b) test nodules. 
Deep learning achieved higher AUC than radiologists for the diffi-
cult nodules (0.92 vs 0.70, respectively; P = .02) and similar AUC 
for the easy nodules (0.89 vs 0.92, respectively; P = .59). Expert 
consensus and deep learning performed similarly for the difficult 
nodules (AUC, 0.90 [95% CI: 0.72, 1.00] vs 0.92 [95% CI: 0.80, 
1.00], respectively; P = .96). However, for the easy nodules, the 
deep learning AUC (0.89; 95% CI: 0.75, 0.98) was slightly lower 
than for expert consensus (0.96; 95% CI: 0.89, 0.99; P = .16).

Discussion
Interpretation of nodules at thyroid US is time consuming and 
has interreader variability. In our study, we developed a deep 
learning algorithm to provide management recommendations 
for thyroid nodules observed on US images and compared its 
performance with radiologists who adhered to American Col-
lege of Radiology (ACR) Thyroid Imaging Reporting and Data 
System (TI-RADS) guidelines. We showed that the performance 

Table 1: Population Statistics according to Malignant Nodule Class

Parameter
All Nodules  
(n = 1377)

Training Nodules  
(n = 1278)

Test Nodules  
(n = 99)

Mean age of patient (y) 53.2 6 14.0 53.2 6 13.9 52.3 6 14.0
Mean nodule size (cm) 2.6 6 1.5 2.6 6 1.5 2.7 6 1.3
No. of malignant nodules 142 (10.3) 127 (9.9) 15 (15)

Note.—Data in parentheses are percentages; mean data are 6 standard deviation.



Management of Thyroid Nodules Seen on US Images

700 radiology.rsna.org  n  Radiology: Volume 292: Number 3—September 2019

Table 2: Comparison of the Deep Learning Algorithm, ACR TI-RADS Committee Expert Readers, and Radiologists

Reader

FNA Follow-up

AUC Experience (y)Sensitivity Specificity Sensitivity Specificity
Deep learning  
  algorithm

13/15 (87) [67, 100] 44/84 (52) [42, 62] 14/15 (93) [79, 100] 32/84 (38) [28, 49] 0.87 [0.76, 0.95] NA

ACR TI-RADS  
   committee expert  

readers (n = 3)

13/15 (87) 43/84 (51) 15/15 (100) 34/84 (40) 0.91 26–32

Radiologists (n = 9)
 Reader 1 14/15 (93) 40/84 (48) 15/15 (100) 28/84 (33) 0.91 20–25
 Reader 2 13/15 (87) 24/84 (29) 15/15 (100) 14/84 (17) 0.76 20
 Reader 3 12/15 (80) 40/84 (48) 15/15 (100) 27/84 (32) 0.85 13
 Reader 4 12/15 (80) 40/84 (48) 15/15 (100) 28/84 (33) 0.83 13
 Reader 5 11/15 (73) 49/84 (57) 14/15 (93) 34/84 (40) 0.78 3
 Reader 6 11/15 (73) 59/84 (70) 13/15 (87) 51/84 (61) 0.85 32
 Reader 7 12/15 (80) 42/84 (50) 15/15 (100) 33/84 (39) 0.81 4
 Reader 8 13/15 (87) 32/84 (38) 14/15 (93) 19/84 (23) 0.79 32
 Reader 9 14/15 (93) 37/84 (44) 15/15 (100) 26/84 (31) 0.83 20
 Mean values for  
  readers 1–9 (%)

83 [64, 98] 48 [37, 59] 97 [90, 100] 34 [24, 46] 0.82 [0.73, 0.90] 17

Note.—Unless otherwise indicated, data are numerator/denominator, data in parentheses are percentages, and data in brackets are 95% 
confidence intervals. The readers used the test set of 99 nodules. ACR = American College of Radiology, AUC = area under the receiver op-
erating characteristic curve, FNA = fine-needle aspiration, NA = not applicable, TI-RADS = Thyroid Imaging Reporting and Data System.

Figure 5: Areas under the receiver operating characteristic curves (AUCs) of (a) deep learning evaluated by 
using 10-fold cross-validation for 1278 training nodules compared with a single radiologist who used the Ameri-
can College of Radiology (ACR) Thyroid Imaging Reporting and Data System (TI-RADS) and (b) deep learning 
evaluated for 99 test nodules compared with expert consensus of three ACR TI-RADS committee members and 
nine radiologists who used ACR TI-RADS.

nodules for biopsy or follow-up on the basis of the likelihood 
estimated in the first step and nodule size. Our deep learning 
system replaces only the first step and uses the same size-based 
triaging in the second stage. Whereas this design decision was 
important to allow for a fair comparison of our system with 
ACR TI-RADS in the proper clinical setting, to some extent it 
limits the system to the decision-making framework of ACR TI-
RADS. Future improvement that considers the interactions be-
tween tumor size and more detailed features of the nodules could 
provide additional gains in performance in terms of sensitivity 
and specificity.

Our study had limitations. Our final test set of 99 nod-
ules (15 nodules positive for malignancy and 84 nod-
ules negative for malignancy) as well as easy and difficult 
test subsets contained a small number of nodules, which  
resulted in wide CIs. This limitation was alleviated by a cross-vali-
dation experiment on the larger training set (127 nodules positive 
for malignancy and 1151 nodules negative for malignancy), which 
showed results that were consistent with those from the test set 
in terms of the comparable performance of our algorithm with 
the radiologist who had the highest performance. Another limi-
tation was that we noticed some differences in performance be-

tween the test set and the 
training set. This was not 
an indication of a high-
bias model (ie, underfit-
ting) because it was the 
case for both deep learn-
ing and the radiologist. 
We believe that the main 
reason for this difference 
is that the nodules from 
the training set were on 
average more difficult to 
interpret, which was cor-
roborated by additional 
exploration of the data 
including evaluation of 
the discriminative power 
of features. Whereas the 
overall performance of all 
predictors (deep learning 
and radiologists) differed 
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of the concepts and a survey of the state of the art with focus on MRI. J Magn Reson 
Imaging 2019;49(4):939–954.
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region proposal networks. Adv Neural Inf Process Syst 2015; 91–99. https://dl.acm.org/
citation.cfm?id=2969250.

 14. Chi J, Walia E, Babyn P, Wang J, Groot G, Eramian M. Thyroid Nodule Classification in 
Ultrasound Images by Fine-Tuning Deep Convolutional Neural Network. J Digit Imag-
ing 2017;30(4):477–486.

 15. Ma J, Wu F, Zhu J, Xu D, Kong D. A pre-trained convolutional neural network based 
method for thyroid nodule diagnosis. Ultrasonics 2017;73:221–230.

 16. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. Proc IEEE 
Conf Comput Vis Pattern Recognit, 2016, 770–778.

 17. Lin TY, Maire M, Belongie S, et al. Microsoft COCO: Common objects in context. Eur 
Conf Comput Vis, 2014; 740–755.

 18. Buades A, Coll B, Morel JM. A non-local algorithm for image denoising. Comput 
Vis Pattern Recognition, 2005 CVPR 2005 IEEE Comput Soc Conf, 2005; 60–65.

 19. Coupé P, Hellier P, Kervrann C, Barillot C. Nonlocal means-based speckle filtering for 
ultrasound images. IEEE Trans Image Process 2009;18(10):2221–2229.

 20. Caruana R. Multitask learning. In: Thrun S, Pratt L, eds. Learning to Learn. Boston, 
Mass: Springer, 1998; 95–133.
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works from overfitting. J Mach Learn Res 2014;15(1):1929–1958. http://jmlr.org/pa-
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between the two sets, the 
relative trends between 
radiologists and our algo-
rithm remained. Regard-
ing the study population, 
all nodules used in our 
study underwent FNA 
because of findings sus-
picious for malignancy 
or US findings that were 
indeterminate, and not 
on the basis of ACR TI-
RADS guidelines. In ad-
dition, no large-scale test 
set from external institu-
tions was available for 
comparison and to assess 
for generalization to a 
broader population of pa-
tients and nodules.

In summary, deep 
learning algorithms may 
be promising tools in 
the decision-making process for assessment of thyroid nodules. 
More studies are needed to further validate our findings.
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Figure 6: Areas under the receiver operating characteristic curves (AUCs) comparing deep learning, American 
College of Radiology (ACR) Thyroid Imaging Reporting and Data System (TI-RADS) committee consensus, and ra-
diologists for (a) 49 easy test nodules and (b) 50 difficult test nodules. The easy nodules (a) include 10 malignant 
nodules on the basis of unanimous correct management decisions from nine readers and expert consensus and 39 
benign nodules on the basis of at least six of 10 correct management decisions for fine-needle aspiration recom-
mendation. The difficult nodules (b) include the remaining five malignant and 45 benign test nodules.


