# Must-read papers
**本仓库主要分享AI结合医疗影像(CT/核磁/超声)领域值得一读的文章和资源**:blush:
集中在超声影像和深度学习
## [Content](#content)
## [Theory](#content)
### [Machine Learning Theory](#content)
### [Deep Learning Theory](#content)
### [Radiomics Theory](#content)
## [Applications](#content)
### [Machine Learning](#content)
1. **Machine learning-based phenogrouping in heart failure to identify responders to cardiac resynchronization therapy,** European Journal of Heart Failure (2018)
*Maja Cikes1, Sergio Sanchez-Martinez, Brian Claggett, Nicolas Duchateau, Gemma Piella, Constantine Butakoff, Anne Catherine Pouleur, Dorit Knappe, Tor Biering-Sørensen, Valentina Kutyifa, Arthur Moss, Kenneth Stein, Scott D. Solomon, and Bart Bijnens*
1. **Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network,** Nature Medicine 25, 65–69(2019)
*Awni Y. Hannun Pranav Rajpurkar, Masoumeh Haghpanahi, Geoffrey H. Tison, Codie Bourn, Mintu P. Turakhia and Andrew Y. Ng*
1. **Performance and Reading Time of Automated Breast US with or without Computer-aided,** Radiology 292:540–549(2019)
*Shanling Yang, MD • Xican Gao, MD • Liwen Liu, PhD, MD • Rui Shu, MD • Jingru Yan, MD • Ge Zhang, MD • Yao Xiao, MD • Yan Ju, MS • Ni Zhao, MD • Hongping Song, PhD, MD*
1. **Impact of Data Presentation on Physician Performance Utilizing ArtificialIntelligence-Based Computer-Aided Diagnosis and DecisionSupport Systems,** Journal of Digital Imaging 32:408–416 (2019)
*L. Barinov1,2,3 A. Jairaj1 M. Becker3,4 SSeymour1 E. Lee3,4 A. Schram3,4&E. Lane4&A. Goldszal3,4 D. Quigley4 L. Paster3,4*
### [Deep Learning](#content)
1. 基于深度学习的医学CT图像中器官的区域检测, 南京师范大学,硕士学位论文 (2018)
*嵇伟伟*
1. 基于大数据和人工智能的超声医学发展现状及问题研究, 综述,肿瘤影像学,2020年第29卷第4期
[[paper]](Healthcare/Applications/Deep Learning/基于大数据和人工智能的超声医学发展现状及问题研究.pdf)
*王海星1,杨志清1,郭玲玲1,郭燕青1,张 靓1,齐 昊1,2*
1. **Management of Thyroid Nodules Seen on US Images:Deep Learning May Match Performance of Radiologists,** Radiology 292:695–701(2019)
[[paper]](https://doi.org/10.1148/radiol.2019181343)
*Mateusz Buda, MSc • Benjamin Wildman-Tobriner, MD • Jenny K. Hoang, MBBS, MHS • David Thayer, PhD, MD •Franklin N. Tessler, MD • William D. Middleton, MD • Maciej A. Mazurowski, PhD*
### [Radiomics](#content)
* #### 非超声影像
1. **Radiomics Analysis for Evaluation of Pathological Complete Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer,** Clinical Cancer Research (2017)
*Zhenyu Liu, Xiao-Yan Zhang,Yan-Jie Shi, Lin Wang, Hai-Tao Zhu, Zhenchao Tang, Shuo Wang, Xiao-Ting Li, Jie Tian, and Ying-Shi Sun*
* #### 超声影像
1. 面向淋巴结病变多分类鉴别的弹性和 B 型 双模态超声影像组学, 生物医学工程学杂志,2019年12月第36卷第6期
*石颉1, 2,江建伟3,常婉英3,陈曼3,张麒1, 2*
### [Combination](#content)
* ### Machine Learning & Radiomics
* ### Deep Learning & Radiomics
1. **Deep learning Radiomics of shear wave elastography significantly improved diagnostic performance for assessing liver fibrosis in chronic hepatitis B: a prospective multicentre study,** GUT (2018)
*Wang K, et al.*
1. 基于影像组学和深度迁移学习的超声图像肝纤维化评估方法研究, 深圳大学,硕士学位论文 (2019)
*赵万明*
## [Related Research Platform](#content)
+ [中国科学院分子影像重点实验室](http://www.radiomics.net.cn/blog/3)
+ [Radiology](https://pubs.rsna.org/journal/radiology)