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Aims We tested the hypothesis that a machine learning (ML) algorithm utilizing both complex echocardiographic data and
clinical parameters could be used to phenogroup a heart failure (HF) cohort and identify patients with beneficial
response to cardiac resynchronization therapy (CRT).
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Methods
and results

We studied 1106 HF patients from the Multicenter Automatic Defibrillator Implantation Trial with Cardiac
Resynchronization Therapy (MADIT-CRT) (left ventricular ejection fraction ≤ 30%, QRS ≥130 ms, New York Heart
Association class ≤ II) randomized to CRT with a defibrillator (CRT-D, n= 677) or an implantable cardioverter
defibrillator (ICD, n= 429). An unsupervised ML algorithm (Multiple Kernel Learning and K-means clustering) was
used to categorize subjects by similarities in clinical parameters, and left ventricular volume and deformation traces
at baseline into mutually exclusive groups. The treatment effect of CRT-D on the primary outcome (all-cause death
or HF event) and on volume response was compared among these groups. Our analysis identified four phenogroups,
significantly different in the majority of baseline clinical characteristics, biomarker values, measures of left and
right ventricular structure and function and the primary outcome occurrence. Two phenogroups included a higher
proportion of known clinical characteristics predictive of CRT response, and were associated with a substantially
better treatment effect of CRT-D on the primary outcome [hazard ratio (HR) 0.35; 95% confidence interval (CI)
0.19–0.64; P= 0.0005 and HR 0.36; 95% CI 0.19–0.68; P= 0.001] than observed in the other groups (interaction
P= 0.02).
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Conclusions Our results serve as a proof-of-concept that, by integrating clinical parameters and full heart cycle imaging data,
unsupervised ML can provide a clinically meaningful classification of a phenotypically heterogeneous HF cohort and
might aid in optimizing the rate of responders to specific therapies.
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Introduction
The goal of personalized medicine is to optimize the tailoring of
treatments to specific patients in order to maximize the treat-
ment response, which, as a prerequisite, requires accurate patient
phenogrouping. The syndrome of heart failure (HF) comprises par-
ticularly heterogeneous patient groups, burdened by limited suc-
cess of some treatment options. Machine learning (ML) approaches
have been applied in the diagnosis, classification, assessment of
readmissions and medication adherence of HF patients,1 as well
as to identify distinct phenogroups in several disorders, includ-
ing HF with preserved ejection fraction (HFpEF),2,3 and to pre-
dict mortality in patients with suspected coronary artery disease.4

Supervised ML involves using iterative algorithms that ‘learn’ from a
large accurately labelled training dataset5; while often diagnostically
‘accurate’, it is generally impossible to infer the ‘diagnostic rea-
soning’ employed in these algorithms. Unsupervised approaches,
however, do not attempt to identify a diagnostic or prognostic
‘truth’ but instead group (or cluster) patients together based on
multiple characteristics, which could be demographic, historical, or
measured. By grouping similar patients together in multiple dimen-
sions, it is then possible to analyse the characteristics of similarly
grouped individuals and relate them to outcomes or therapeutic
responses. We have previously shown that unsupervised Multiple
Kernel Learning (MKL) can be applied to find similarities among
patients, based on a wide range of heterogeneous data, such as
complex imaging-based descriptors of ventricular structure and
function, in an ‘agnostic’ manner2.

One such area where more accurate phenogrouping could
improve selection of patients is cardiac resynchronization therapy
(CRT) which, despite clear guidelines for which patients should be
treated, a substantial proportion of patients do not respond to this
therapy.6–9 We hypothesized that novel approaches based on ML,
integrating clinical parameters with complex echocardiographic
data on myocardial deformation and left ventricular (LV) volume
changes measured over the entire cardiac cycle might be able to
overcome some of the limitations of traditional approaches to
patient selection for CRT, and provide an example of how ML can
be utilized to better phenogroup patients with HF with respect
to both outcomes and response to therapy. We therefore utilized
data from Multicenter Automatic Defibrillator Implantation Trial
with Cardiac Resynchronization Therapy (MADIT-CRT), a large
randomized clinical trial of 1820 patients with New York Heart
Association (NYHA) functional class ≤ II symptoms, LV ejection
fraction (LVEF) ≤ 30% and QRS ≥ 130 ms,10 to determine whether
unsupervised ML could aid in the identification of patients likely to
respond to CRT.

Methods
Study population
The design and results of MADIT-CRT have been published
previously.10,11 In brief, the MADIT-CRT trial enrolled 1820 patients
from December 2004, through April 2008, at 110 centres in the
United States, Canada, and Europe. These were mildly symptomatic ..
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.. patients with ischaemic heart disease (in NYHA class I or II) or
patients with non-ischaemic heart disease (in NYHA class II) in sinus
rhythm with an LVEF ≤ 30%, and a QRS duration ≥130 ms, who were
randomly assigned in a 3:2 ratio to receive a CRT-D or an ICD alone.
All recruited subjects met guideline indications for ICD therapy.12 The
main objective was to determine whether CRT-D reduces the risk
of death or HF events compared with ICD. The average follow-up
period was 2.4 years. The protocol was approved by the institutional
review board at each of the participating centres, and each subject
gave written informed consent.

Echocardiography
Two-dimensional (2D) echocardiography was performed before
device implantation (baseline) and at 1-year follow-up, following a
study-specific protocol.13 The echocardiographic core laboratory
at Brigham and Women’s Hospital performed the screening of the
echocardiograms for quality, and the echocardiographic measurements
relevant to the study. Left ventricular and atrial volumes were assessed
by the biplane Simpson’s method. LVEFs were calculated according
to standard methods.13 Reproducibility of the primary volumetric
measurements has been previously demonstrated.14

The echocardiographic images of 1106 patients in this MADIT-CRT
analysis (CRT-D, n= 677; ICD-only, n= 429) were analysed using the
TomTec Arena software (v1.0, TomTec Imaging Systems, Unterschleis-
sheim, Germany). Endocardial borders were traced in the end-systolic
frame of the apical 4- and 2-chamber views, and automatically propa-
gated over the course of two cardiac cycles. We stored 49 segmental
LV longitudinal strain and one volume curves for a posteriori ML analysis.
Previous studies report excellent reproducibility of the estimated LV
myocardial deformation.15 The reasons to exclude patients from the
analysis included: images in non-DICOM format, frame rate < 30 Hz,
missing of 4- or 2-chamber images, unacceptable 2D image quality, use
of echocardiographic contrast agent, presence of endocardial dropout,
or out-of-plane images.

Outcome measures
The primary endpoint of the trial was death from any cause or a
non-fatal HF event, whichever came first.10 The adjudication of the
endpoints was carried out by an independent endpoint committee,
unaware of patient randomization status.10 In addition to determining
the treatment effect on the primary outcome over an average follow-up
of 2.3 years, we have also assessed the benefit on echocardiographic
response at 1-year follow-up.

Baseline characteristics, data
pre-processing and unsupervised
machine learning
Seventy-seven baseline variables, consisting of clinical and echocardio-
graphic parameters with < 20% missing data were identified. After fil-
tering correlated variables using a cut-off Pearson’s coefficient > 0.8,
50 variables including demographic and laboratory data, ECG and
echocardiography measurements, data on medication use and recruit-
ment centre were selected at baseline and were used as input for
the ML algorithm (Table 1). These variables included both categori-
cal and continuous data, with the continuous variables converted to
ordinal by dividing their range into 10 uniform bins.16 Missing data for
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Table 1 Baseline characteristics of the study patients by phenogroups

Overall average Phenogroup 1 Phenogroup 2 Phenogroup 3 Phenogroup 4 Group
(n= 157) (n= 370) (n= 291) (n= 288) P-value

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Age, years 64±11 62±11 64±11 67±11 63±11 < 0.001

Female sex 274 (25%) 35 (22.3%) 30 (8.1%) 195 (67.0%) 14 (4.9%) < 0.001

Race, white 1006 (91%) 151 (96%) 324 (88%) 274 (94%) 257 (89%) 0.002
Ischaemic CMP 622 (56%) 71 (45.2%) 264 (71.4%) 124 (42.6%) 163 (56.6%) < 0.001

NYHA class II 934 (84%) 141 (89.8%) 287 (77.6%) 261 (89.7%) 245 (85.1%) < 0.001

Hypertension 687 (62%) 77 (49.0%) 254 (68.7%) 174 (59.8%) 182 (63.2%) < 0.001

Diabetes 311 (28%) 36 (22.9%) 118 (31.9%) 62 (21.3%) 95 (33.0%) 0.002
Smoking 134 (12%) 27 (17.2%) 44 (11.9%) 30 (10.3%) 33 (11.5%) 0.18
Prior CABG 312 (28%) 39 (24.8%) 129 (34.9%) 53 (18.2%) 91 (31.6%) < 0.001

Prior non-CABG revascularization 314 (28%) 30 (19.1%) 146 (39.5%) 60 (20.6%) 78 (27.1%) < 0.001

Prior MI 497 (45%) 52 (33.1%) 215 (58.1%) 101 (34.7%) 129 (44.8%) < 0.001

Prior CVA 66 (6%) 9 (5.7%) 33 (8.9%) 9 (3.1%) 15 (5.2%) 0.016
Prior HF hospitalization 409 (37%) 56 (35.7%) 108 (29.2%) 125 (43.0%) 120 (41.7%) < 0.001

No. of hospitalizations prior to enrolment 0.73
0 590 (53%) 88 (56%) 195 (53%) 160 (55%) 147 (51%)
1 374 (34%) 48 (31%) 130 (35%) 96 (33%) 100 (35%)
2 97 (9%) 18 (12%) 29 (8%) 24 (8%) 26 (9%)
≥ 3 45 (4%) 3 (2%) 16 (4%) 11 (4%) 15 (5%)

Prior ventricular arrhythmias 71 (6%) 17 (10.8%) 23 (6.2%) 14 (4.8%) 17 (5.9%) 0.09
Prior atrial arrhythmias 115 (10%) 15 (9.6%) 44 (11.9%) 19 (6.5%) 37 (12.9%) 0.06
SBP, mmHg 123± 18 117±16 125± 18 123± 18 123±17 < 0.001

DBP, mmHg 72±10 71±11 73±10 71±10 72±11 0.07
Heart rate, b.p.m. 63±11 66±11 62±11 64±11 64±12 < 0.001

Height, cm 173± 9.6 171± 8 177± 7 163± 8 178± 7 < 0.001

BMI, kg/m2 28.3± 5.0 27.4± 4.0 29.6± 4.7 25.5± 4.7 29.8± 5.0 < 0.001

BSA, m2 2.01 ± 0.24 1.95± 0.20 2.13± 0.17 1.75± 0.15 2.14± 0.19 < 0.001

QRS duration, ms 157± 19 172± 22 152± 16 154± 16 159± 20 < 0.001

LBBB 782 (71%) 135 (86%) 204 (55.1%) 235 (80.8%) 208 (72.2%) < 0.001

RBBB 133 (12%) 7 (4.5%) 80 (21.6%) 18 (6.2%) 28 (9.7%) < 0.001

Interventricular conduction delay 184 (17%) 14 (8.9%) 86 (23.2%) 33 (11.3%) 51 (17.7%) < 0.001

Six-minute walk distance, m 363±103 378± 100 367±106 346±102 366± 99 0.006
Blood urea nitrogen, mg/dL 22± 9 22± 9 22±10 21± 8 23± 9 0.014
Creatinine, mg/dL 1.2± 0.3 1.1± 0.3 1.2± 0.3 1.1± 0.3 1.3± 0.3 < 0.001

ACE inhibitor/ARB 1055 (95%) 151 (96.2%) 348 (94.1%) 284 (97.6%) 272 (94.4%) 0.14
Beta-blocker 1031 (93%) 145 (92.4%) 343 (92.7%) 276 (94.9%) 267 (92.7%) 0.64
Diuretic 814 (74%) 132 (84.1%) 242 (65.4%) 215 (73.9%) 225 (78.1%) < 0.001

Aldosterone antagonist 326 (30%) 56 (35.7%) 98 (26.5%) 76 (26.1%) 96 (33.3%) 0.04
Calcium channel blocker 88 (8%) 6 (3.8%) 46 (12.4%) 16 (5.5%) 20 (6.9%) < 0.001

Amiodarone 74 (7%) 13 (8.3%) 20 (5.4%) 11 (3. 8%) 30 (10.4%) 0.007
Digitalis 282 (26%) 56 (35.7%) 77 (20.8%) 83 (28.5%) 66 (22.9%) 0.002
Statin 743 (67%) 88 (56.1%) 292 (78.9%) 166 (57.1%) 197 (68.4%) < 0.001

Antiarrhythmic medication 7 (1%) 1 (0.6%) 4 (1.1%) 0 (0%) 2 (0.7%) 0.38
LVEDVi, mL/m2 124± 28 172± 31 105± 12 119±16 128±14 < 0.001

LVESVi, mL/m2 88± 23 128± 26 72± 9 83±12 93±10 < 0.001

Regional wall thickness 0.25± 0.03 0.22± 0.03 0.26± 0.02 0.26± 0.02 0.25± 0.02 < 0.001

LV mass, g 211± 38 249± 43 197± 25 186± 22 233± 32 < 0.001

LVMi, g/m2 106± 18 128±18 93±12 107± 14 109±14 < 0.001

LA width, cm 4.0± 0.2 4.2± 0.2 3.9± 0.1 3.8± 0.1 4.1± 0.1 < 0.001

LAVi, mL/m2 46±10 59±11 39± 6 44± 8 50± 8 < 0.001

LVEF, % 29± 3 26± 3 31± 3 31± 3 28± 3 < 0.001

12-segment GLS, % –9.8± 2.8 –7.8± 2.4 –10.8± 2.8 –10.4± 2.7 –9.0± 2.4 < 0.001

RV diameter, mm 28.3± 2.3 30.4± 1.9 27.7±1.7 26.7±1.7 29.8±1.6 < 0.001

RV FAC, % 43± 6 39± 5 44± 5 44± 6 40± 4 < 0.001

ACE, angiotensin-converting enzyme; ARB, angiotensin receptor blocker; BMI, body mass index; BSA, body surface area; CABG, coronary artery bypass grafting; CMP,
cardiomyopathy; CVA, cerebrovascular accident; DBP, diastolic blood pressure; FAC, fractional area change; GLS, global longitudinal strain; HF, heart failure; LA, left atrial;
LAVI, left atrial volume index; LBBB, left bundle branch block; LV, left ventricular; LVEDVi, left ventricular end-diastolic volume index; LVEF, left ventricular ejection fraction;
LVESVi, left ventricular end-systolic volume index; LVMi, left ventricular mass index; MI, myocardial infarction; NYHA, New York Heart Association; RBBB, right bundle branch
block; RV, right ventricular; SBP, systolic blood pressure.
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input variables ranged from 0% to 15.6% in the case of right ventricu-
lar fractional area change. They were imputed using the imputeFAMD
function within the missMDA package in R,17 which allows imputing
mixed datasets (with continuous and categorical variables) using a prin-
cipal component method adapted for mixed data.

In addition to these common baseline characteristics, baseline LV
strain and volume traces throughout the entire cardiac cycle as
well as a temporal deformation vector (used to keep the relative
changes in duration of the cardiac phases, relevant for improved HF
characterization2) were included in the further processing by the ML
algorithm. In order to retain the wealth of data on LV geometry and
deformation over a cardiac cycle contained in the traces, each one of
them was defined and inputted to the algorithm as a set of data points
(specifically, 102 variables per trace), instead of e.g. only a peak value
(such as end-diastolic and end-systolic volume or peak systolic strain).
Prior to analysis, these traces need to be referenced to a common
temporal framework18 (see online supplementary Methods S1). The
49 segmental strain traces available from the 2-chamber and 4-chamber
views were converted into two basal, two mid-LV and two apical seg-
ments, by isolating and averaging groups of eight consecutive traces.
The most apical trace was discarded.

The final input to the algorithm is shown in Figure 1 (left panel).
For the 2-chamber and 4-chamber views of every patient, a total
of eight echocardiographic descriptors (traces) were analysed per
view (Figure 1, left panel): one volume trace, six strain traces, and
one temporal deformation vector, which results from the temporal
alignment step. Fifty clinical parameters inputted to the algorithm are
listed in Table 1. These echocardiographic descriptors (full traces) and
baseline clinical parameters provided a total of 1682 input variables:
each echocardiographic trace contains 102 data points, making a total
of 1632 echocardiographic trace data points (8 traces x 2 views x 102
time instants) to which 50 clinical parameters were added. We then
used unsupervised MKL (Figure 1, right panel), an ML algorithm already
validated and extensively tested to combine cardiac motion data,2 to
convert the input dataset consisting of 1682 variables into a compact
representation space where subjects are positioned according to their
similarity, while blinded to the patient’s outcome status with respect
to both clinical events and volume response.

Once positioned in the compact representation space, subjects
were clustered with the K-means algorithm (Figure 1, right panel) to
identify phenotypically-distinct categories of CRT candidates. We ran
the clustering algorithm with increasing number of predefined groups
(from 3 to 8), however, the clinical interpretation of the clusters
remained stable; ultimately, we chose the configuration that maximizes
the statistical significance (minimizing P-value for trend, adjusted for
multiple testing) of the treatment effect on the primary outcome
among clusters (henceforth referred as phenogroups).

Further details about our unsupervised ML method can be found in
the online supplementary Methods S1.

Comparison of clinical
and echocardiographic characteristics;
survival and treatment effect on primary
outcome and left ventricular reverse
remodelling
Categorical variables are expressed as counts and percentages, and
differences among phenogroups were assessed using the chi-square
test. Continuous variables are presented as mean± standard deviation, ..
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.. and inter-group differences were calculated using ANOVA. A P-value of
< 0.05 was considered statistically significant. The previous comparison
was complemented with a physiologic interpretation of the found
phenogroups in the form of a variability analysis of strain and volume
patterns in the 2-chamber and 4-chamber views, using advanced
regression techniques.19 Kaplan–Meier estimates for HF or death in
each phenogroup were determined and statistically compared with
the log-rank test. Cox proportional hazards regression analyses were
performed on each phenogroup to estimate the treatment effect on
the primary endpoint. The treatment effect on volumetric response
was expressed for every phenogroup as the difference between treated
and untreated patients in LV end-diastolic volume index (LVEDVi) per
cent change (from baseline to 1-year follow-up).

Stability and internal validation of the
unsupervised machine learning model
We evaluated the generalizability of our dimensionality reduction
solution assessing the correlation among low-dimensional space distri-
butions obtained by analysing populations with an increasing number
of subjects in common. We also checked the consistency among the
K-means clustering configurations by computing the membership
agreement when increasingly partitioning the space, from 3 to 8
clusters.

We assessed the stability of these results through internal validation,
which involved running our ML algorithm in a randomly-selected
portion of the database (75%= training set) to create clusters, finding
the corresponding cluster for the remaining subjects (25%= validation
set), and comparing both the training and the validation clustering
solutions in terms of clinical characteristics and outcome. Further
details on both the stability experiments and the internal validation
can be found in the online supplementary Methods S1.

The ML algorithm as well as the regression technique used to anal-
yse the variability of echocardiographic patterns among phenogroups
were implemented using MATLAB (R2016b, 2016, The MathWorks
Inc., Natick, MA, USA). Survival and treatment effect analyses were
performed in Stata version 13 (StataCorp, College Station, TX, USA).

Results
Results of machine learning
The MKL algorithm reduced the dimensionality of the input data
to equal the number of input subjects minus 1. However, only
the first two dimensions of the output (low-dimensional) space
were considered for clustering, as they encoded the most salient
characteristics of these data.2 Furthermore, they presented the
highest standard deviations on the coordinates of subjects (with
further dimensions showing a linear decay up to the sixth dimen-
sion, from which the standard deviation is > 98% smaller than the
first dimension), and thus contributed to a higher extent to the
cluster assignment computed by the K-means algorithm.

Baseline characteristics of patients
by phenogroups
Baseline characteristics of the patients included in this analysis
were comparable to the remainder of the MADIT-CRT study, as
reported previously.15

© 2018 The Authors
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Figure 1 Overview of the proposed analysis. Input data consist of both complex descriptors from echocardiography and clinical parameters
(left panel), which are used by the unsupervised machine learning algorithm to position subjects according to their similarity through
dimensionality reduction, and eventually propose coherent subgroups of subjects using clustering (right panel). 2ch, 2-chamber; 4ch, 4-chamber;
ECG, electrocardiogram; MKL, Multiple Kernel Learning.

The most statistically significant clustering solution cate-
gorized the overall patient population into four clusters, i.e.
phenogroups (Figure 1, right panel) with distinct clinical and
echocardiographic characteristics (Table 1, Figure 2). This solution
was better at identifying CRT responders than those obtained by
independently analysing clinical parameters or complex echocar-
diographic descriptors alone (see online supplementary Methods
S1). Phenogroups 1 and 3 were associated with the highest
proportion of clinical characteristics known to be predictive of
volumetric response to CRT14: phenogroups 1 and 3 comprised
the highest proportion of patients with non-ischaemic cardiomy-
opathy (54.8% and 57.4%, respectively) and left bundle branch
block (LBBB, 86.0% and 80.8%, respectively), the QRS duration
was the longest in phenogroup 1, which was also the phenogroup
with the lowest median age, while phenogroup 3 consisted of the
largest proportion of female patients. Conversely, phenogroups 2
and 4 were associated with the highest proportion of male patients
and ischaemic origin of HF, as well as the lowest proportion of
patients with LBBB morphology on the elctrocardiogram.

The values of systolic blood pressure were the lowest and
heart rate was the highest in phenogroup 1; this was also the
phenogroup with the highest proportion of patients receiving
diuretics and aldosterone antagonists. There was no significant
difference in the proportion of patients receiving beta-blockers
or angiotensin-converting enzyme inhibitors/angiotensin receptor
blockers among the four phenogroups.

Furthermore, echocardiography measurements revealed that
the patients in phenogroup 1 had the most remodelled left ven-
tricles at baseline (the largest LV end-diastolic and end-systolic
volume index, LV mass index and left atrial volume index) and the ..
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. lowest LVEF and 12-segment global longitudinal strain, while the
same was observed for right ventricular size and function in this
phenogroup (largest right ventricular diameter and lowest frac-
tional area change), with phenogroup 4 having similarly remodelled
right ventricles. Conversely, these measurements of left atrial and
LV structure demonstrated the lowest severity of remodelling in
phenogroup 2. Right ventricular size was the smallest and frac-
tional area change and LVEF were the highest in phenogroups 2
and 3 (group P-values for all mentioned echo parameters < 0.001).

In addition to the clinical and echocardiographic characteristics
of the studied patients, the MKL algorithm also included data on LV
volume traces and longitudinal strain traces. Representative ‘finger-
prints’ of such traces are shown for each phenogroup in Figure 3.
In phenogroup 1, the LV strain curves show late systolic stretch
of the apical septal segment and a mirrored contraction of the api-
cal lateral wall — a feature described as a part of the LBBB-related
septal flash pattern. The volume trace shows a delayed peak, i.e.
tardily achieved end-systolic volume. These patients had the largest
LV end-diastolic volumes and the lowest LVEF values. The strain
curves in phenogroup 2 show nearly absent deformation only in
the apical anterolateral region, with a normal shape of the strain
trace and lower peak values in the septal and inferior regions. Along
with phenogroup 3, these were the least dilated ventricles with
the highest LVEF values. In phenogroup 3, there is early defor-
mation of the apical septum while some early stretch is present
in the lateral traces, mirroring an early deformation of the apical
septum. Phenogroup 4 exhibits nearly absent deformation in the
basal inferoseptum with very low deformation in all apical regions
and somewhat preserved deformation in the basal anterolateral
wall — this pattern is indicative of large apical infarcts extending

© 2018 The Authors
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Figure 2 Typical clinical characteristics, features of left ventricular deformation patterns and outcome rates of the four phenogroups. The
green circles represent the phenogroups more likely to respond to cardiac resynchronization therapy, as opposed to the red circles. The image
summarizes the clinical interpretability of the results obtained by the utilized unsupervised machine learning algorithm. DM, diabetes mellitus;
FAC, fractional area change; GLS, global longitudinal strain; HF, heart failure; HR, heart rate; HTN, hypertension; ICD, implantable cardioverter
defibrillator; ICM, ischaemic cardiomyopathy; LA, left atrium; LBBB, left bundle branch block; LV, left ventricle; LVEF, left ventricular ejection
fraction; MRA, mineralocorticoid receptor antagonist; NYHA, New York Heart Association; RV, right ventricle; SBP, systolic blood pressure.

to the inferoseptum. Although the volume curve in phenogroup
4 peaks early, these patients also have markedly remodelled left
ventricles.

Comparison of survival among
phenogroups
The natural course of disease, as assessed in the ICD-only subgroup
of patients, varied among the phenogroups (Figure 4, left panel):
the Kaplan–Meier estimate of the probability of survival free of
HF revealed a less severe disease course in phenogroup 2 in ..
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.. which the primary event occurred in 15.4% of the patients in

the ICD-only subgroup (2.1% of the patients died, 9.8% were
hospitalized for HF and the remaining 3.5% had an out-of-hospital
HF event). Conversely, the untreated patients in phenogroup 1 had
the highest incidence of the primary event, occurring in 38% of
patients (1.4% had an all-cause death, 33.8% were hospitalized for
HF and 2.8% had a HF event not requiring hospitalization). Overall,
the primary outcome occurred in 220 patients from the current
analysis, and differed significantly among phenogroups: it occurred
most frequently in phenogroups 1 and 4 [41 patients (26.1%)
and 79 patients (27.4%), respectively] and was least represented
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Figure 3 Volume and strain traces corresponding to the representative patient of each phenogroup, i.e. those located at the barycentre of
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in phenogroups 2 and 3 [55 patients (14.9%) and 45 patients
(15.5%), respectively] (Figure 4, left panel). All-cause death did not
differ significantly among the phenogroups; the difference in the
primary endpoint was mainly driven by a significant difference in the
occurrence of HF requiring hospitalization, occurring most often
in phenogroups 1 and 4 (21.0% and 20.5% of patients, respectively)
and least frequently in phenogroups 2 and 3 (10.3% and 11.3% of
patients, respectively).

Effect of treatment on primary outcome
and left ventricular reverse remodelling
The effect of CRT-D treatment, compared to ICD-only, on the
primary outcome of death or HF event assessed among the four
phenogroups by Cox proportional hazard analysis is depicted on
Figure 4 (right panel): patients categorized to phenogroups 1 and
3 exhibited a 64% and 65% reduction in the risk of HF or death,
respectively [hazard ratio (HR) 0.36, 95% confidence interval (CI)
0.19–0.68; P= 0.001 and HR 0.35, 95% CI 0.19–0.64; P= 0.0005,
respectively], which was a substantially higher treatment ben-
efit than observed in the other groups (interaction P= 0.02). ..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

.. Phenogroups 2 and 4 benefited from CRT-D therapy to a lesser
extent compared to the overall cohort; however, the non-response
did not reach statistical significance.

A significant treatment effect on LV reverse remodelling, defined
as LVEDVi per cent change, was noted in all phenogroups (Figure 4,
right panel). However, phenogroup 3, characterized by a lower
severity of ventricular remodelling at baseline, was identified to
be associated with a substantially better volume response: in this
phenogroup, CRT-D treatment was associated with an average
18.8% decrease in LVEDVi, when corrected for ICD-only treatment
(95% CI −21.2 to −16.4; P< 0.0001). A marked volume response
was also detected in phenogroup 1 with an average 18.2% decrease
in LVEDVi (95% CI −21.9 to −14.6; P< 0.0001), while patients in
phenogroups 2 (HR −13.6, 95% CI −15.8 to −11.5; P< 0.0001)
and 4 (HR −14.2, 95% CI −16.8 to −11.5; P< 0.0001) showed the
lowest amount of LVEDVi per cent change within 12 months.

Stability and internal validation
The similarity among low-dimensional space distributions
increased with the number of subjects in common at the input of
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Figure 4 Kaplan–Meier estimates of the probability of survival free of heart failure (HF) according to treatment arm in each of the
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the ML analysis, resulting in excellent correlation when the sub-
jects in common were above 500 (Pearson correlation coefficient
> 0.90). We also observed a high degree of consistency across
clustering configurations from 3 to 8 clusters. Lastly, similar trends
were observed in the clinical parameters and the treatment effect
when comparing the training and validation clustering configura-
tions, emphasizing the capacity of our model to predict outcomes
for new, unseen data. All these results are detailed in the online
supplementary Methods S1.

Discussion
In this analysis we have shown that unsupervised ML allows for
a novel integration of entire cycle-wide LV volume and deforma-
tion traces from echocardiography, rather than only single data
points, which can be combined with extensive clinical and med-
ication parameters to phenotype patients with complex diseases
such as HF. We have also demonstrated the added value of com-
bining both sets of descriptors to find subjects that are more likely
to respond to CRT, compared to the results obtained by indepen-
dently analysing clinical parameters or complex echocardiographic
descriptors alone. Our results serve as a proof-of-concept that
unsupervised ML-based approaches can be used to combine both
standard clinical parameters and complex echocardiographic data
to provide a clinically interpretable and meaningful classification of ..
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. a phenotypically heterogeneous HF cohort and to identify patients
most likely to respond to specific therapies.

Integrating echocardiographic tracings
to address the heterogeneity of a heart
failure population
Heart failure is a multifaceted syndrome and response to thera-
pies is based on multiple clinical and imaging parameters as well as
biomarkers. Traditional methods to define phenotypes and predict
outcomes within groups of individuals with HF rely on the eluci-
dation of individual phenotypic subgroups that focus on isolated
characteristics (i.e. aetiology of HF, QRS morphology, presence
or absence of specific co-morbidities, cardiac structure and func-
tion, etc.). Furthermore, while assessment of cardiac structure and
function using current echocardiographic analysis tools can identify
subgroups of HF patients at higher risk for adverse outcomes,20

standard approaches ascribe risk to a limited amount of individual
measurements in a unidimensional fashion. Namely, data on car-
diac structure and function provided by echocardiography contain
a plethora of information representing multiple time points in a
cardiac cycle (the number of data points corresponds to the frame
rate of the acquired images), but are typically under-exploited in
standard quantitative data analyses and replaced by single measure-
ments, thus failing to summarize the complexity of events over
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the cardiac cycle. Unlike previous studies that aimed, but failed,
at finding a single echocardiographic measure of dyssynchrony to
improve patient selection for CRT beyond current guidelines,21

we integrated echocardiographic imaging in a more comprehen-
sive and novel manner by integrating entire LV volume and strain
patterns throughout the cardiac cycle rather than utilizing single
measures such as LV end-diastolic and systolic volume or global
longitudinal strain. By integrating over 1600 data points per cardiac
cycle, this method also is able to incorporate complex patterns of
regional cardiac function that are impossible to describe paramet-
rically. These algorithms thus combine a detailed analysis of cardiac
dynamics over an entire cardiac cycle with an extensive set of clin-
ical parameters.

It is often emphasized that the management of HF patients
requires improved integration of clinical data with echocardiog-
raphy — the most widely used and accessible diagnostic tool for
a comprehensive assessment of cardiac structure and function.
Indeed, ML allows for the integration of very large amounts of con-
tinuous and discrete variables pertinent to clinical characteristics,
laboratory values, electrocardiographic parameters and commonly
analysed echocardiographic variables, as has been applied in HF
and other cardiovascular diseases. Unsupervised ML techniques,
such as the MKL version that we have utilized in this study, offer
the advantage of exploiting these full acquired datasets to com-
pare similarities amongst patients without assumptions on which
single measurements (data points) are most relevant for the stud-
ied patient population. In addition to tissue Doppler trace analysis
in HF with preserved ejection fraction patients,22 the analysis of
LV strain traces has previously been performed in a study of 60
patients with acute myocardial infarction by applying principal com-
ponent analysis.23 Furthermore, the prediction of CRT response
was also attempted in a smaller cohort of 34 CRT candidates.24 The
strengths of our analysis as compared to both of these studies is in
the use of a non-linear (more adequate to process cardiac motion
patterns, compared to principal component analysis2) and unsuper-
vised analysis technique (compared to supervised MKL24), thus bet-
ter suited to agnostically partition a population into homogeneous
groups. Importantly, the richness of the analysed data obtained
by integrating entire volume/strain traces provides enough infor-
mation to enable identification of phenogroups (which have been
‘agnostically’ defined by the K-means algorithm) of patients with
similar (but not identical) properties without prior assumptions
on outcomes. The performed dimensionality reduction aids in
extracting the relevant clinical characteristics of the phenogroups,
providing (patho)physiologically relevant and interpretable results.
Indeed, ML has previously been successfully employed in the diag-
nosis, classification and prognostication of HF cohorts.1,25 In addi-
tion to the achieved advancements and ongoing efforts in the
field,26 we believe that the approach proposed in this analysis con-
tributes to this growing field by providing novelty and strengthening
the integration of detailed imaging data with standardly utilised
clinical variables in an ML analysis dedicated to providing clinically
interpretable results. Namely, our analysis was superior at identi-
fying CRT responders compared to independently analysing clini-
cal parameters or complex echocardiographic descriptors alone,
which did not provide phenogroups with statistically significant ..
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.. differences in the treatment effect (see online supplementary
Methods S1).

Positioning unsupervised learning
in the spectrum of machine learning
approaches and the utility
of interpretability
The current data analysis trend is towards powerful approaches
such as deep learning, which uses neural networks to solve com-
plex pattern recognition problems27 such as object28 and speech29

recognition, but requires immense collections of data (often lacking
in clinical medicine) to make reliable predictions.27 Furthermore,
the ‘black-box’ nature of this methodology often provides results
difficult to interpret.27 Human interpretability is increasingly rec-
ognized as a highly relevant feature of ML methodologies, crucial in
efforts towards data-driven precision medicine, based on informed
and auditable decisions. Thus, we opted for a ‘simpler’ and less
data-demanding analysis approach, for which we reinforce aspects
of interpretability (Figure 5). This approach was specifically designed
to combine heterogeneous data in an unsupervised way, which
ultimately allows finding groups of patients with similar character-
istics and therapy response. Our unsupervised analysis approach,
rather than classifying based on a priori knowledge as done in
a recent study targeting the same clinical problem,30 allows for
natural clustering of patients, and results in the identification of
patient subgroups with defined treatment effects. Unlike the work
by Kalscheur et al.,30 where the authors used a Random Forest
regression model to predict outcome, we emphasized the inter-
pretability of our model, which allows exploring the computed data
‘universe’, and highlights the data features that are relevant to the
clinical hypothesis under study. This provides for a more mean-
ingful description and distinction of specific patient groups within
the cohort. Specifically, phenogroups 1 and 3 showed marked
response to CRT (both in primary outcome and volume response)
and shared similar clinical attributes known to be predictive of
(volume) response to CRT while the LV strain traces revealed an
LBBB-related strain pattern. In contrast, phenogroups 2 and 4 rep-
resented the non-responder groups, characterized by a low pro-
portion of LBBB, high proportion of ischaemic heart disease and LV
strain patterns consistent with ischaemia/scar. Phenogroup 2 con-
sisted of patients with the least severe course of disease — those
with the lowest NYHA class, lowest diuretic use and the least
remodelled left ventricles. We postulate that, in conjunction with
a different HF substrate (predominantly ischaemic heart disease
and other co-morbidities), this lead to a lack of response to CRT.
Conversely, those in phenogroup 4 exhibited a larger amount of
biventricular remodelling and extensive scarring on the LV strain
traces with a high primary outcome rate in the ICD-only subgroup,
possibly inferring a more advanced stage of ischaemic heart dis-
ease, too advanced to respond to CRT (Figure 2). In summary, a
combination of beneficial clinical parameters and strain patterns
(some known to be typically associated with LBBB and describing
LV mechanics in CRT responders) appear to predict a beneficial
treatment effect of CRT, superior to echocardiographic and clinical
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Figure 5 The comparison of current clinical practice and machine learning in the approach to diagnosis and clinical decision making. Both
approaches utilize similar ‘input’ sources, and depending on clinical experience or machine learning approach chosen, can use more or less
complex data. Also, both approaches can be based on either interpretable reasoning or black box reasoning. While outcome data for a specific
patient are known only a posteriori in clinical practice, most machine learning approaches integrate these data a priori. The proposed phenotyping
approach based on dimensionality reduction of complex patterns and unsupervised grouping is agnostic to outcomes, allowing for phenogroup
interpretation based on the integration of outcomes data a posteriori (dashed line). EDV, end-diastolic volume; GLS, global longitudinal strain;
WT, wall thickness; EF, ejection fraction.

parameters alone. Contrasting clinical features and strain patterns
revealing more non-deforming regions suggest less successful treat-
ment by CRT.

In the current manuscript, we did not aim to set out a spe-
cific ‘model’ or scoring system for the prediction of response to
CRT, which we believe requires further tool development as well as
external validation. Rather, we aimed to ascertain the potential of
unsupervised learning approaches in novel phenogrouping of a HF
cohort, extended by its application in the prediction of response
to a specific therapy, and to demonstrate the benefit of integrating
complex imaging data and clinical parameters to accomplish robust
phenogrouping. We believe that the novelty predominantly lies in
the described methodology, and perhaps less so in the features
detected to be associated with CRT response: while this agnostic ..
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. approach identified features that were previously shown to predict

response to CRT,14,21 we were able to accomplish this in a multi-
variable manner using both clinical and imaging-based data, rather
than by comparison of unidimensional subgroups. Our study is
timely, since our echo-based analyses could be relatively easily pro-
grammed into echocardiographic post-processing equipment that
already does extract the kind of deformation descriptors that we
have used.

Limitations
Several limitations of this study should be acknowledged. The
results are confined to a selected population of patients with
mild HF enrolled in a clinical trial with robust inclusion and
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exclusion criteria, which have thus determined the input data to
the algorithm. A longer follow-up time than the average of 2.3 years
available in our cohort may have been beneficial. Furthermore,
an inherent limitation of echocardiographic studies applies to our
study as well: the quality of data relies on acquired images and
their quality, which was however minimized by excluding echo
studies with unacceptable 2D image quality. Although our analysis
approach is unsupervised, some human intervention in the form of
specification of the most meaningful clustering configuration was
required. We demonstrated the overall stability of our results with
different database sizes and different sets of descriptors; however,
as with all statistical modelling, the results are dependent on the
input data, and careful interpretation is needed to guarantee the
generalizability of the results. Due to the overlapping between
phenogroups, our findings lose power in areas close to the frontier
between clusters (‘grey zone’). However, if more subjects and
clinical descriptors were available, our implementation would allow
a more detailed phenotyping, enabling a more patient-specific
approach. In such scenario, for every new case the algorithm could
suggest similar subjects from its records and provide statistics
on the likeliness that a certain subject may develop a disease
(diagnosis) or may evolve in a determined way with time or therapy
(prognosis). Finally, while external validation would be optimal, a
comparable dataset is difficult to obtain, particularly in view of the
detailed baseline characteristics and outcomes of the cohort, as
well as in respect to the completeness of the dataset. However, we
have assessed the stability of our data through internal validation
(online supplementary Methods S1).

Conclusion
This analysis confirms the utility of unsupervised ML for a novel
approach to the integration of complex echocardiographic data
(data on LV volume and deformation throughout the cardiac cycle
instead of single data points) with clinical parameters to phenotype
patients with HF with reduced ejection fraction. Our results serve
as a proof-of-concept that fully unsupervised ML approaches can
provide an interpretable and clinically meaningful classification of
a heterogeneous cohort of HF patients, creating a basis of a
data-driven platform that might aid in identifying patient subgroups
most likely to respond to specific therapies. The feasibility and
novelty of the proposed model for patient phenogrouping in HF
and its added value in clinical decision making should be evaluated
in a prospective controlled trial.

Supplementary Information
Additional supporting information may be found online in the
Supporting Information section at the end of the article.
Methods S1. Supplementary methods.
Figure S1. Example of non-rigid registration of a left ventricular
(LV) volume curve (black) to the reference LV volume curve (blue)
via currents, with the resulting aligned LV curve shown in red.
Figure S2. Forest plots for clustering configurations from 3 to 8
clusters. They show the effect of CRT-D treatment, compared to ..
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.. ICD only, on the primary outcome of death or heart failure event
for each of the clusters.
Figure S3. Correlation between pairs of output distributions
(subsets of the first 6 dimensions).
Figure S4. Correlation between the coordinates of 200 subjects in
common to output distributions of increasing size, for the subspace
dimensionality varying from 2 to 8.
Figure S5. Consistency among different clustering configurations.
The plots show the first two dimensions considered for this work.
Figure S6. Description of the clinical characteristics among the
clusters for different clustering configurations (from 3 to 8), using
a single spider plot superimposing the signature of each cluster. The
values depicted are normalized to the entire population.
Figure S7. Hazard ratios for primary outcome among the
phenogroups in the training and validation sets.
Figure S8. Kaplan–Meier curves showing the ICD arms for all
phenogroups.
Figure S9. This figure is equivalent to Figure 4 (right panel) in
the manuscript, but replacing end-diastolic volume by the left
ventricular ejection fraction per cent change in the y-axis.
Table S1. Selected group of clinical characteristics by phenogroup
in the training set.
Table S2. Selected group of clinical characteristics by phenogroup
in the validation set.

Funding
The work of S. Sanchez-Martinez was supported by a fellowship
from ‘la Caixa’ Banking Foundation. C. Butakoff was supported
by a grant from the Fundació La Marató de TV3 (n. 20154031),
Spain. N. Duchateau was supported by ‘Programme Avenir
Lyon Saint-Etienne’ (PALSE-IMPULSION-2016, Lyon, France).
MADIT-CRT was sponsored by Boston Scientific, while no addi-
tional funding was provided for this analysis. This study was
also partially supported by the Spanish Ministry of Economy and
Competitiveness (grant TIN2014-52923-R; Maria de Maeztu Units
of Excellence Programme - MDM-2015-0502) and FEDER.
Conflict of interest: V.K. has received research grant support and
speaker honoraria from Zoll and Boston Scientific. A.M. and S.D.S.
has received research grants from Alnylam, Amgen, AstraZeneca,
Bellerophon, BMS, Celladon, Gilead, GSK, Ionis, Lone Star Heart,
Mesoblast, MyoKardia, NIH/NHLBI, Novartis, Sanofi Pasteur, Ther-
acos, and has consulted for Akros, Alnylam, Amgen, AstraZeneca,
Bayer, BMS, Corvia, Gilead, GSK, Ironwood, Merck, Novartis,
Pfizer, Roche, Takeda, Theracos, Quantum Genetics, Cardurion,
AoBiome, Janssen, Cardiac Dimensions. This work was not sup-
ported by any of these grants or contracts. All other authors have
no conflict of interests to declare.

References
1. Awan SE, Sohel F, Sanfilippo FM, Bennamoun M, Dwivedi G. Machine learning in

heart failure: ready for prime time. Curr Opin Cardiol 2018;33:190–195.
2. Sanchez-Martinez S, Duchateau N, Erdei T, Fraser AG, Bijnens BH, Piella G.

Characterization of myocardial motion patterns by unsupervised multiple kernel
learning. Med Image Anal 2017;35:70–82.

3. Shah SJ, Katz DH, Selvaraj S, Burke MA, Yancy CW, Gheorghiade M, Bonow RO,
Huang CC, Deo RC. Phenomapping for novel classification of heart failure with
preserved ejection fraction. Circulation 2015;131:269–279.

© 2018 The Authors
European Journal of Heart Failure © 2018 European Society of Cardiology

Administrator
高亮



12 M. Cikes et al.

4. Motwani M, Dey D, Berman DS, Germano G, Achenbach S, Al-Mallah MH,
Andreini D, Budoff MJ, Cademartiri F, Callister TQ, Chang HJ, Chinnaiyan K,
Chow BJ, Cury RC, Delago A, Gomez M, Gransar H, Hadamitzky M, Hausleiter J,
Hindoyan N, Feuchtner G, Kaufmann PA, Kim YJ, Leipsic J, Lin FY, Maffei E,
Marques H, Pontone G, Raff G, Rubinshtein R, Shaw LJ, Stehli J, Villines TC,
Dunning A, Min JK, Slomka PJ. Machine learning for prediction of all-cause
mortality in patients with suspected coronary artery disease: a 5-year multicentre
prospective registry analysis. Eur Heart J 2017;38:500–507.

5. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, Venu-
gopalan S, Widner K, Madams T, Cuadros J, Kim R, Raman R, Nelson PC,
Mega JL, Webster DR. Development and validation of a deep learning algo-
rithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA
2016;316:2402–2410.

6. Abraham WT, Fisher WG, Smith AL, Delurgio DB, Leon AR, Loh E, Kocovic
DZ, Packer M, Clavell AL, Hayes DL, Ellestad M, Trupp RJ, Underwood J,
Pickering F, Truex C, McAtee P, Messenger J; MIRACLE Study Group. Cardiac
resynchronization in chronic heart failure. N Engl J Med 2002;346:1845–1853.

7. Young J, Abraham W, Smith A, Leon A, Lieberman R, Wilkoff B, Canby R,
Schroeder J, Liem L, Hall S, Wheelan K; Multicenter InSync ICD Randomized
Clinical Evaluation (MIRACLE ICD) Trial Investigators. Combined cardiac resyn-
chronization and implantable cardioversion defibrillation in advanced chronic
heart failure: the MIRACLE ICD trial. JAMA 2003;289:2685–2694.

8. Saxon LA, Boehmer JP, Hummel J, Kacet S, De Marco T, Naccarelli G, Daoud E.
Biventricular pacing in patients with congestive heart failure: two prospective
randomized trials. Am J Cardiol 1999;83:120D–123D.

9. Packer M. Proposal for a new clinical end point to evaluate the efficacy of drugs
and devices in the treatment of chronic heart failure. J Card Fail 2001;7:176–182.

10. Moss AJ, Hall WJ, Cannom DS, Klein H, Brown MW, Daubert JP, Estes
NA, Foster E, Greenberg H, Higgins SL, Pfeffer MA, Solomon SD, Wilber D,
Zareba W; MADIT-CRT Trial Investigators. Cardiac-resynchronization therapy
for the prevention of heart-failure events. N Engl J Med 2009;361:1329–1338.

11. Moss AJ, Brown MW, Cannom DS, Daubert JP, Estes M, Foster E, Greenberg
HM, Hall WJ, Higgins SL, Klein H, Pfeffer M, Wilber D, Zareba W. Multicen-
ter Automatic Defibrillator Implantation Trial-Cardiac Resynchronization Ther-
apy (MADIT-CRT): design and clinical protocol. Ann Noninvasive Electrocardiol
2005;10:34–43.

12. Epstein AE, Dimarco JP, Ellenbogen KA, Estes NA, Freedman RA, Gettes LS,
Gillinov AM, Gregoratos G, Hammill SC, Hayes DL, Hlatky MA, Newby LK,
Page RL, Schoenfeld MH, Silka MJ, Stevenson LW, Sweeney MO, Smith SC,
Jacobs AK, Adams CD, Anderson JL, Buller CE, Creager MA, Ettinger SM,
Faxon DP, Halperin JL, Hiratzka LF, Hunt SA, Krumholz HM, Kushner FG, Lytle
BW, Nishimura RA, Ornato JP, Page RL, Riegel B, Tarkington LG, Yancy CW.
ACC/AHA/HRS 2008 Guidelines for device-based therapy of cardiac rhythm
abnormalities: a report of the American College of Cardiology/American Heart
Association Task Force on Practice Guidelines (Writing Committee to Revise the
ACC/AHA/NASPE 2002 Guideline update for implantation of cardiac pacemakers
and antiarrhythmia devices): developed in collaboration with the American Asso-
ciation for Thoracic Surgery and Society of Thoracic Surgeons. Circulation 2008;
117:e350–408.

13. Solomon SD, Foster E, Bourgoun M, Shah A, Viloria E, Brown MW, Hall WJ, Pfef-
fer MA, Moss AJ; MADIT-CRT Investigators. Effect of cardiac resynchronization
therapy on reverse remodeling and relation to outcome: Multicenter Automatic
Defibrillator Implantation Trial: Cardiac Resynchronization Therapy. Circulation
2010;122:985–992.

14. Goldenberg I, Moss AJ, Hall WJ, Foster E, Goldberger JJ, Santucci P, Shinn T,
Solomon S, Steinberg JS, Wilber D, Barsheshet A, McNitt S, Zareba W,
Klein H; MADIT-CRT Executive Committee. Predictors of response to car-
diac resynchronization therapy in the Multicenter Automatic Defibrillator
Implantation Trial with Cardiac Resynchronization Therapy (MADIT-CRT). Cir-
culation 2011;124:1527–1536. ..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

. 15. Knappe D, Pouleur AC, Shah AM, Cheng S, Uno H, Hall WJ, Bourgoun M, Fos-
ter E, Zareba W, Goldenberg I, McNitt S, Pfeffer MA, Moss AJ, Solomon SD;
Multicenter Automatic Defibrillator Implantation Trial-Cardiac Resynchroniza-
tion Therapy Investigators. Dyssynchrony, contractile function, and response to
cardiac resynchronization therapy. Circ Heart Fail 2011;4:433–440.

16. Dougherty J, Kohavi R, Sahami M. Supervised and unsupervised discretization of
continuous features. In: Prieditis A, Russell S, eds. Machine Learning: Proceedings
of the Twelfth International Conference. San Francisco, CA: Morgan Kaufmann
Publishers; 1995. pp194–202.

17. Josse J, Husson F. missMDA: a package for handling missing values in multivariate
data analysis. J Stat Softw 2016;70:1–31.

18. Duchateau N, Giraldeau G, Gabrielli L, Fernández-Armenta J, Penela D, Evertz R,
Mont L, Brugada J, Berruezo A, Sitges M, Bijnens BH. Quantification of local
changes in myocardial motion by diffeomorphic registration via currents: applica-
tion to paced hypertrophic obstructive cardiomyopathy in 2D echocardiographic
sequences. Med Image Anal 2015;19:203–219.

19. Duchateau N, Craene M De, Sitges M, Caselles V. Adaptation of multiscale
function extension to inexact matching. Application to the mapping of individuals
to a learnt manifold. In: Nielsen F, Barbaresco F, eds. Geometric Science of
Information. GSI 2013. Berlin, Heidelberg: Springer; 2013. pp578–586.

20. Cikes M, Solomon SD. Beyond ejection fraction: an integrative approach for
assessment of cardiac structure and function in heart failure. Eur Heart J
2016;37:1642–1650.

21. Chung ES, Leon AR, Tavazzi L, Sun JP, Nihoyannopoulos P, Merlino J, Abraham
WT, Ghio S, Leclercq C, Bax JJ, Yu CM, Gorcsan J, Sutton MS, De Sutter J,
Murillo J. Results of the predictors of response to CRT (PROSPECT) trial.
Circulation 2008;117:2608–2616.

22. Sanchez-Martinez S, Duchateau N, Erdei T, Kunszt G, Aakhus S, Degiovanni A,
Marino P, Carluccio E, Piella G, Fraser AG, Bijnens BH. Machine learning analysis
of left ventricular function to characterize heart failure with preserved ejection
fraction. Circ Cardiovasc Imaging 2018;11:e007138.

23. Tabassian M, Alessandrini M, Herbots L, Mirea O, Pagourelias ED, Jasaityte R, Eng-
vall J, De Marchi L, Masetti G, D’hooge J. Machine learning of the spatio-temporal
characteristics of echocardiographic deformation curves for infarct classification.
Int J Cardiovasc Imaging 2017;33:1159–1167.

24. Peressutti D, Sinclair M, Bai W, Jackson T, Ruijsink J, Nordsletten D, Asner L,
Hadjicharalambous M, Rinaldi CA, Rueckert D, King AP. A framework for com-
bining a motion atlas with non-motion information to learn clinically useful
biomarkers: application to cardiac resynchronisation therapy response predic-
tion. Med Image Anal 2017;35:669–684.

25. Ahmad T, Lund LH, Rao P, Ghosh R, Warier P, Vaccaro B, Dahlström U,
O’Connor CM, Felker GM, Desai NR. Machine learning methods improve
prognostication, identify clinically distinct phenotypes, and detect heterogeneity
in response to therapy in a large cohort of heart failure patients. J Am Heart Assoc
2018;7:1–15.

26. Shameer K, Johnson KW, Glicksberg BS, Dudley JT, Sengupta PP. Machine
learning in cardiovascular medicine: are we there yet? Heart 2018;104:
1156–1164.

27. Castelvecchi D. Can we open the black box of AI? Nature 2016;538:20–23.
28. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convo-

lutional neural networks. In: Pereira F, Burges CJC, Bottou L, Weinberger KQ,
eds. Advances in Neural Information Processing Systems 25. Red Hook, NY: Curran
Associates, Inc.; 2012. pp1097–1105.

29. Hinton GE, Deng L, Yu D, Dahl GE, Mohamed AR, Jaitly N, Senior A, Vanhoucke V,
Nguyen P, Sainath TN, Kingsbury B. Deep neural networks for acoustic modeling
in speech recognition: the shared views of four research groups. IEEE Signal Process
Mag 2012;29:82–97.

30. Kalscheur MM, Kipp RT, Tattersall MC, Mei C, Buhr KA, DeMets DL, Field ME,
Eckhardt LL, Page CD. Machine learning algorithm predicts cardiac resynchro-
nization therapy outcomes. Circ Arrhythm Electrophysiol 2018;11:e005499.

© 2018 The Authors
European Journal of Heart Failure © 2018 European Society of Cardiology

Administrator
高亮




