49 lines
1.4 KiB
Markdown
49 lines
1.4 KiB
Markdown
# Must-read papers
|
||
|
||
**本仓库主要分享在医疗影像(CT/核磁/超声)处理领域值得一读的文章**:blush:
|
||
|
||
## [Content](#content)
|
||
|
||
<table>
|
||
<tr><td colspan="2"><a href="#tool-related">1. Tool related</a></td></tr>
|
||
<tr>
|
||
<td> <a href="#machine-learning-theory">1.1 Machine Learning</a></td>
|
||
<td> <a href="#deep-learning-theory">1.2 Deep Learning</a></td>
|
||
</tr>
|
||
<tr>
|
||
<td> <a href="#radiomics-theory">1.3 Radiomics</a></td>
|
||
<td></td>
|
||
</tr>
|
||
<tr><td colspan="2"><a href="#application-related">2. Application related</a></td></tr>
|
||
<tr>
|
||
<td> <a href="#machine-learning">2.1 Machine Learning</a></td>
|
||
<td> <a href="#deep-learning">2.2 Deep Learning</a></td>
|
||
</tr>
|
||
<tr>
|
||
<td> <a href="#radiomics">2.3 Radiomics</a></td>
|
||
<td> <a href="#combination">2.4 Combination</a></td>
|
||
</tr>
|
||
<tr><td colspan="2"><a href="related-research-platform">3. Related Research Platform</a></td></tr>
|
||
</table>
|
||
|
||
## [Tool related](#content)
|
||
|
||
### [Machine Learning Theory](#content)
|
||
|
||
### [Deep Learning Theory](#content)
|
||
|
||
### [Radiomics Theory](#content)
|
||
|
||
## [Application related](#content)
|
||
|
||
### [Machine Learning](#content)
|
||
|
||
### [Deep Learning](#content)
|
||
|
||
### [Radiomics](#content)
|
||
|
||
### [Combination](#content)
|
||
|
||
## [Related Research Platform](#content)
|
||
+ [中国科学院分子影像重点实验室](http://www.radiomics.net.cn/blog/3)
|