81 lines
2.9 KiB
Markdown
81 lines
2.9 KiB
Markdown
# Must-read papers
|
||
|
||
**本仓库主要分享在医疗影像(CT/核磁/超声)处理领域值得一读的文章**:blush:
|
||
|
||
## [Content](#content)
|
||
|
||
<table>
|
||
<tr><td colspan="2"><a href="#tool-related">1. Tool related</a></td></tr>
|
||
<tr>
|
||
<td> <a href="#machine-learning-theory">1.1 Machine Learning</a></td>
|
||
<td> <a href="#deep-learning-theory">1.2 Deep Learning</a></td>
|
||
</tr>
|
||
<tr>
|
||
<td> <a href="#radiomics-theory">1.3 Radiomics</a></td>
|
||
<td></td>
|
||
</tr>
|
||
<tr><td colspan="2"><a href="#application-related">2. Application related</a></td></tr>
|
||
<tr>
|
||
<td> <a href="#machine-learning">2.1 Machine Learning</a></td>
|
||
<td> <a href="#deep-learning">2.2 Deep Learning</a></td>
|
||
</tr>
|
||
<tr>
|
||
<td> <a href="#radiomics">2.3 Radiomics</a></td>
|
||
<td> <a href="#combination">2.4 Combination</a></td>
|
||
</tr>
|
||
<tr><td colspan="2"><a href="related-research-platform">3. Related Research Platform</a></td></tr>
|
||
</table>
|
||
|
||
## [Tool related](#content)
|
||
|
||
### [Machine Learning Theory](#content)
|
||
|
||
### [Deep Learning Theory](#content)
|
||
|
||
### [Radiomics Theory](#content)
|
||
|
||
## [Application related](#content)
|
||
|
||
### [Machine Learning](#content)
|
||
#### 有监督学习
|
||
1. **Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network** Nature Medicine 25, 65–69(2019)
|
||
|
||
*Awni Y. Hannun Pranav Rajpurkar, Masoumeh Haghpanahi, Geoffrey H. Tison, Codie Bourn, Mintu P. Turakhia and Andrew Y. Ng*
|
||
|
||
#### 无监督学习
|
||
1. **Machine learning-based phenogrouping in heart failure to identify responders to cardiac resynchronization therapy** European Journal of Heart Failure (2018)
|
||
|
||
*Maja Cikes1, Sergio Sanchez-Martinez, Brian Claggett, Nicolas Duchateau, Gemma Piella, Constantine Butakoff, Anne Catherine Pouleur, Dorit Knappe, Tor Biering-Sørensen, Valentina Kutyifa, Arthur Moss, Kenneth Stein, Scott D. Solomon, and Bart Bijnens*
|
||
|
||
|
||
### [Deep Learning](#content)
|
||
|
||
### [Radiomics](#content)
|
||
|
||
#### 非超声影像
|
||
|
||
1. **Radiomics Analysis for Evaluation of Pathological Complete Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer** Clinical Cancer Research (2017)
|
||
|
||
*Zhenyu Liu, Xiao-Yan Zhang,Yan-Jie Shi, Lin Wang, Hai-Tao Zhu, Zhenchao Tang, Shuo Wang, Xiao-Ting Li, Jie Tian, and Ying-Shi Sun*
|
||
|
||
#### 超声影像
|
||
|
||
1. **面向淋巴结病变多分类鉴别的弹性和 B 型 双模态超声影像组学** 生物医学工程学杂志 2019年12月第36卷第6期
|
||
|
||
*石颉1, 2,江建伟3,常婉英3,陈曼3,张麒1, 2*
|
||
|
||
### [Combination](#content)
|
||
|
||
#### 硕士学位论文
|
||
|
||
1. **基于深度学习的医学CT图像中器官的区域检测** 南京师范大学 (2018)
|
||
|
||
*嵇伟伟*
|
||
|
||
1. **基于影像组学和深度迁移学习的超声图像肝纤维化评估方法研究** 深圳大学 (2019)
|
||
|
||
*赵万明*
|
||
|
||
## [Related Research Platform](#content)
|
||
+ [中国科学院分子影像重点实验室](http://www.radiomics.net.cn/blog/3)
|