Applications | ||
Literature review | ||
Theory | ||
README.md |
Must-read papers
本仓库主要分享AI结合医疗影像(CT/核磁/超声)领域值得一读的文章和资源😊
集中在超声影像和深度学习
Content
1. Theory | |
1.1 Machine Learning | 1.2 Deep Learning |
1.3 Radiomics | |
2. Applications | |
2.1 Machine Learning | 2.2 Deep Learning |
2.3 Radiomics | 2.4 Combination |
3. Literature review | |
4. Related Research Platform |
Theory
Machine Learning Theory
Deep Learning Theory
Radiomics Theory
Applications
Machine Learning
-
Machine learning-based phenogrouping in heart failure to identify responders to cardiac resynchronization therapy, European Journal of Heart Failure (2018) *[read]*
Maja Cikes1, Sergio Sanchez-Martinez, Brian Claggett, Nicolas Duchateau, Gemma Piella, Constantine Butakoff, Anne Catherine Pouleur, Dorit Knappe, Tor Biering-Sørensen, Valentina Kutyifa, Arthur Moss, Kenneth Stein, Scott D. Solomon, and Bart Bijnens
-
Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network, Nature Medicine 25, 65–69(2019) *[read]*
Awni Y. Hannun Pranav Rajpurkar, Masoumeh Haghpanahi, Geoffrey H. Tison, Codie Bourn, Mintu P. Turakhia and Andrew Y. Ng
-
Performance and Reading Time of Automated Breast US with or without Computer-aided, Radiology 292:540–549(2019) *[read]*
Shanling Yang, MD • Xican Gao, MD • Liwen Liu, PhD, MD • Rui Shu, MD • Jingru Yan, MD • Ge Zhang, MD • Yao Xiao, MD • Yan Ju, MS • Ni Zhao, MD • Hongping Song, PhD, MD
-
Impact of Data Presentation on Physician Performance Utilizing ArtificialIntelligence-Based Computer-Aided Diagnosis and DecisionSupport Systems, Journal of Digital Imaging 32:408–416 (2019) *[read]*
L. Barinov1,2,3 A. Jairaj1 M. Becker3,4 SSeymour1 E. Lee3,4 A. Schram3,4&E. Lane4&A. Goldszal3,4 D. Quigley4 L. Paster3,4
Deep Learning
-
基于深度学习的医学CT图像中器官的区域检测, 南京师范大学,硕士学位论文 (2018) *[read]*
嵇伟伟
-
Management of Thyroid Nodules Seen on US Images:Deep Learning May Match Performance of Radiologists, Radiology 292:695–701(2019) *[read]*
Mateusz Buda, MSc • Benjamin Wildman-Tobriner, MD • Jenny K. Hoang, MBBS, MHS • David Thayer, PhD, MD •Franklin N. Tessler, MD • William D. Middleton, MD • Maciej A. Mazurowski, PhD
-
Liver fibrosis classification based on transfer learning and FCNet for ultrasound images, IEEE (2017) [[read]](/Applications/Deep%20Learning/Liver fibrosis classification based on transfer learning and FCNet for ultrasound images.pdf)
DAN MENG, LIBO ZHANG, GUITAO CAO, WENMING CAO, GUIXU ZHANG, AND BING HU
-
Learning to diagnose cirrhosis with liver capsule guided ultrasound image classification, Sensors (2017) [[read]](/Applications/Deep%20Learning/Learning to diagnose cirrhosis with liver capsule guided ultrasound image classification.pdf)
*Xiang Liu , Jia Lin Song , Shuo Hong Wang , Jing Wen Zhao and Yan Qiu Chen *
Radiomics
-
非超声影像
-
Radiomics Analysis for Evaluation of Pathological Complete Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer, Clinical Cancer Research (2017) *[read]*
Zhenyu Liu, Xiao-Yan Zhang,Yan-Jie Shi, Lin Wang, Hai-Tao Zhu, Zhenchao Tang, Shuo Wang, Xiao-Ting Li, Jie Tian, and Ying-Shi Sun
-
超声影像
-
面向淋巴结病变多分类鉴别的弹性和 B 型 双模态超声影像组学, 生物医学工程学杂志,2019年12月第36卷第6期 *[read]*
石颉1, 2,江建伟3,常婉英3,陈曼3,张麒1, 2
Combination
-
Machine Learning & Radiomics
-
Deep Learning & Radiomics
-
Deep learning Radiomics of shear wave elastography significantly improved diagnostic performance for assessing liver fibrosis in chronic hepatitis B: a prospective multicentre study, GUT (2018) *[read]*
Wang K, et al.
-
基于影像组学和深度迁移学习的超声图像肝纤维化评估方法研究, 深圳大学,硕士学位论文 (2019) *[read]*
赵万明
Literature review
-
计算机辅助诊断技术在超声医学中的应用进展, 综述,肿瘤影像学,2019年第28卷第5期*[read]*
毕 珂,王 茵
-
人工智能时代超声医学新发展,综述,第二军医大学学报,2019 年 5 月第 40 卷第 5 期*[read]*
赵佳琦,刁宗平,徐 琪,章建全
-
基于大数据和人工智能的超声医学发展现状及问题研究, 综述,肿瘤影像学,2020年第29卷第4期 *[read]*
王海星,杨志清,郭玲玲,郭燕青,张 靓,齐 昊